留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2019年冬季北京海陀山局地环流特征及机理分析

王倩倩 权建农 程志刚 张曼 薛海乐 伍永学

王倩倩,权建农,程志刚,张曼,薛海乐,伍永学. 2022. 2019年冬季北京海陀山局地环流特征及机理分析. 气象学报,80(1):1-15 doi: 10.11676/qxxb2022.005
引用本文: 王倩倩,权建农,程志刚,张曼,薛海乐,伍永学. 2022. 2019年冬季北京海陀山局地环流特征及机理分析. 气象学报,80(1):1-15 doi: 10.11676/qxxb2022.005
Wang Qianqian, Quan Jiannong, Cheng Zhigang, Zhang Man, Xue Haile, Wu Yongxue. 2022. Local circulation characteristics and mechanism analysis of Haituo Mountain in Beijing during winter 2019. Acta Meteorologica Sinica, 80(1):1-15 doi: 10.11676/qxxb2022.005
Citation: Wang Qianqian, Quan Jiannong, Cheng Zhigang, Zhang Man, Xue Haile, Wu Yongxue. 2022. Local circulation characteristics and mechanism analysis of Haituo Mountain in Beijing during winter 2019. Acta Meteorologica Sinica, 80(1):1-15 doi: 10.11676/qxxb2022.005

2019年冬季北京海陀山局地环流特征及机理分析

doi: 10.11676/qxxb2022.005
基金项目: 国家重点研发计划项目(2018YFF0300101-2)、北京市自然科学基金项目(8204062)、国家自然科学基金项目(41875123)
详细信息
    作者简介:

    王倩倩,主要从事地面遥感观测和气溶胶-对流相互作用方面的研究。E-mail:qqwang@ium.cn

    通讯作者:

    权建农,主要从事气象观测、气溶胶、雾霾和大气边界层领域的研究工作。E-mail:jnquan@ium.cn

  • 中图分类号: P425

Local circulation characteristics and mechanism analysis of Haituo Mountain in Beijing during winter 2019

  • 摘要: 海陀山作为北京冬(残)奥会的主要室外赛场之一,其复杂的地形对风场的精细化预报提出了严峻的挑战,亟需开展加密的风场观测提高对复杂地形下局地环流特征及其影响机理的认识,并为提升赛区精细化预报与服务提供数据支撑。基于2019年度海陀山的观测试验,利用加密自动气象站、测风激光雷达、涡动相关仪、云高仪等多源数据,对海陀山风场的水平分布、垂直结构、山谷风转换时间和不同背景风场影响下的局地环流特征进行了统计分析;从地形动力、热力和背景风场三个方面探讨了海陀山局地环流的影响机理。结果表明:弱背景风场下,海陀山局地环流特征显著,以热力驱动的山谷风环流为主导,并叠加了背景气流过山的影响。低海拔(1650 m以下)站点,山风和谷风表现为近乎相反的方向;而在中(1650—1800 m)高(1800 m以上)海拔的山脊或山峰附近的站点,山风和谷风均以偏西气流为主。中低海拔站点的谷风明显强于山风,高海拔站点则相反;而在强西北背景风影响下,海陀山局地环流特征消失,整个山谷风向趋于与背景风一致,昼夜风向的差异较小,山谷中风速随海拔高度降低而减小。

     

  • 图  1  海陀山区地形和加密观测站点分布

    Figure  1.  Topography and intensive observation sites over the Haituo Mountain

    图  2  山风 (蓝色) 和谷风 (黄色) 空间分布特征

    Figure  2.  Spatial distribution characteristics of mountain (blue) and valley breezes (yellow)

    图  3  各站点(a—o)山谷风日变化特征

    Figure  3.  Diurnal variation of mountain-valley breeze at individual stations (a—o)

    图  4  各站点(a—o)加热率和气压变率的日变化

    Figure  4.  Diurnal variations of heating rate and barometric rate at individual stations (a—o)

    图  5  各站点谷风开始 (圆)和结束 (方)时间

    Figure  5.  The start (dot) and end time (square) of valley winds at individual stations (different colors represent different stations)

    图  6  西大庄科站 (a) 辐射、(b) 湍流动能、(c) 三维超声风速和 (d) 位温梯度的日变化

    Figure  6.  Diurnal variations of (a) radiation, (b) turbulence kinetic energy,(c) three-dimensional ultrasonic wind speed and (d) potential temperature gradient at Xidazhuangke station (U wind (Ux),V wind (Uy),vertical wind (Uz,multiplied by a factor of 5) are shown by green,blue and black lines,respectively;the red line indicates horizontal wind speed (WS),which is calculated from U and V winds; k is the scale factor; for each time,curves are created by calculating the deviations from the mean,and multiplied by the scale factor)

    图  7  西大庄科站平均风场垂直结构

    Figure  7.  Mean vertical structure of wind field at Xidazhuangke station (red indicates downdraft,blue indicates updraft;The vertical axis represents the height above surface;red lines indicate temperature profiles derived from soundings)

    图  8  不同强度背景风场下的风廓线

    Figure  8.  Wind profiles under different background wind conditions

    图  9  不同强度背景风场对海陀山局地环流的影响

    Figure  9.  Influences of different background wind fields on local circulation in the Haituo Mountain

    图  10  探空期间各层梯度理查孙数

    Figure  10.  Gradient Richardson Number during sounding release

    图  11  弱背景风场下探空风速 (a. 单次探空风速,b. 昼夜平均探空风速,c. 垂直山脊方向风速分量)

    Figure  11.  Wind speed soundings under weak background wind condition (a. wind speed of each sounding,b. daytime and nighttime mean wind speeds,c. component of wind speed perpendicular to the mountain ridge)

    图  12  海陀山局地环流概念模型示意 (a、b. 弱背景风场条件,c、d. 强背景风场条件; a、c. 白天,b、d. 夜间)

    Figure  12.  Schematic diagrams of local circulation in the Haituo Mountain (a,b. for weak background wind field,c,d. for strong background wind field;a,c. day time,b,d. Night time)

    表  1  观测设备及产品介绍

    Table  1.   Instruments and products

    观测设备仪器型号产品时间和垂直分辨率
    自动气象站DZZ4温度、气压、风速风向1 min
    测风激光雷达WindPrint S4000水平风向风速和垂直风速1 min;26 m (3.8 km)
    涡动相关系统CSAT3,LI7500DS湍流动能、辐射、三维超声风速1 min,30 min
    自动探空仪CF18ZDTK-4V-300温度、风向风速2—6 次/d
    云高仪CL31云底高度16 s;10 m (4.5 km)
    云雷达HMB-KST雷达反射率~600 ms;30 m (15 km)
     注:括号内数据为探测范围的最大高度。
    下载: 导出CSV

    表  2  海陀山过山气流参数

    Table  2.   Parameters of mountain flow at the Haituo Mountain

    高度(m)h(m)U(m/s)FrNh/UNa/U过山气流特征
    700—10001504.24 ([0,4.64])2.36 ([0,2.58])0.42 (>0.39)>1扰流,过山气流分离,背风涡旋,强重力波破碎
    400—7004501.53 ([0,3.77])0.23 ([0,0.57])4.29 (>1.74)>1扰流,过山气流分离,背风涡旋,重力波破碎
    0—4008004.94 ([0,2.97])0.08 ([0,0.30])13.12 (>3.36)>1扰流,过山气流分离,背风涡旋
     注:括号前数据为平均值,括号内数据为数值范围。
    下载: 导出CSV
  • [1] 蔡旭晖,郭昱,刘辉志等. 2002. 北京地区低层大气流动模态研究. 北京大学学报(自然科学版),38(3):387-392 doi: 10.3321/j.issn:0479-8023.2002.03.015

    Cai X H,Guo Y,Liu H Z,et al. 2002. Flow patterns of lower atmosphere over Beijing area. Acta Sci Nat Univ Pekinensis,38(3):387-392 (in Chinese) doi: 10.3321/j.issn:0479-8023.2002.03.015
    [2] 巢纪平,章光锟,袁孝明. 1964. 二层模式中小地形对于气压跳跃形成的初步研究. 气象学报,34(2):233-241 doi: 10.11676/qxxb1964.024

    Chao J P,Zhang G K,Yuan X M. 1964. A preliminary investigation for the formation of pressure jump produced by the mountain in a two-layer model. Acta Meteor Sinica,34(2):233-241 (in Chinese) doi: 10.11676/qxxb1964.024
    [3] 董群,赵普生,王迎春等. 2017. 北京山谷风环流特征分析及其对PM2.5浓度的影响. 环境科学,38(6):2218-2230

    Dong Q,Zhao P S,Wang Y C,et al. 2017. Impact of mountain-valley wind circulation on typical cases of air pollution in Beijing. Environ Sci,38(6):2218-2230 (in Chinese)
    [4] 窦以文,屈玉贵,陶士伟等. 2008. 北京自动气象站实时数据质量控制应用. 气象,34(8):77-81 doi: 10.7519/j.issn.1000-0526.2008.08.012

    Dou Y W,Qu Y G,Tao S W,et al. 2008. The application of quality control procedures for real-time data from automatic weather stations. Meteor Mon,34(8):77-81 (in Chinese) doi: 10.7519/j.issn.1000-0526.2008.08.012
    [5] 傅抱璞. 1980. 山谷风. 气象科学,1(1-2):1-14

    Fu B P. 1980. Mountain and valley breezes. Scientia Meteor Sinica,1(1-2):1-14 (in Chinese)
    [6] 季国良,王尧奇,沈志宝等. 1983. 兰州市区冬季低空的风场特征. 环境研究,2(4):22-29

    Ji G L,Wang Y Q,Shen Z B,et al. 1983. Characteristics of low level wind field in winter in Lanzhou city. Environ Res,2(4):22-29 (in Chinese)
    [7] 贾春晖,窦晶晶,苗世光等. 2019. 延庆-张家口地区复杂地形冬季山谷风特征分析. 气象学报,77(3):475-488 doi: 10.11676/qxxb2019.033

    Jia C H,Dou J J,Miao S G,et al. 2019. Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing-Zhangjiakou in the winter. Acta Meteor Sinica,77(3):475-488 (in Chinese) doi: 10.11676/qxxb2019.033
    [8] 鞠丽霞,王勤耕,张美根等. 2003. 济南市城市热岛和山谷风环流的模拟研究. 气候与环境研究,8(4):467-474 doi: 10.3878/j.issn.1006-9585.2003.04.09

    Ju L X,Wang Q G,Zhang M G,et al. 2003. A simulation of heat island circulation and mountain-valley breeze in Jinan. Climatic Environ Res,8(4):467-474 (in Chinese) doi: 10.3878/j.issn.1006-9585.2003.04.09
    [9] 李江林,陈玉春,吕世华等. 2009. 利用RAMS模式对山谷城市冬季局地风场的数值模拟. 高原气象,28(6):1250-1259

    Li J L,Chen Y C,Lü S H,et al. 2009. Numerical simulation of local circulation in valley city in winter using RAMS model. Plateau Meteor,28(6):1250-1259 (in Chinese)
    [10] 李艺苑,王东海,王斌. 2009. 中小尺度过山气流的动力问题研究. 自然科学进展,19(3):310-324 doi: 10.3321/j.issn:1002-008X.2009.03.010

    Li Y Y,Wang D H,Wang B. 2009. Study on the dynamic problem of medium and small scale airflow over mountains. Prog Natl Sci,19(3):310-324 (in Chinese) doi: 10.3321/j.issn:1002-008X.2009.03.010
    [11] 李子华,石春娥,曹必铭. 1994. 重庆市区冬季晴天局地环流结构. 南京气象学院学报,17(2):232-237

    Li Z H,Shi C E,Cao B M. 1994. Study of winter fine-day local circulation structure in the urban area of Chongqing. J Nanjing Inst Meteor,17(2):232-237 (in Chinese)
    [12] 林之光,李映江. 1985. 天山天池山谷风的气候研究. 地理研究,4(1):63-70

    Lin Z G,Li Y J. 1985. The climatological research of the mountain-valley breeze in Tianshan Mountains. Geogr Res,4(1):63-70 (in Chinese)
    [13] 邱崇践,蒲朝霞. 1991. 山谷风环流控制下的大气污染物输送和扩散过程:二维数值模拟研究. 高原气象,10(4):362-370

    Qiu C J,Pu Z X. 1991. The transportation and dispersion of air pollutants controlled by mountain-valley circulation:Two-dimensional numerical simulation. Plateau Meteor,10(4):362-370 (in Chinese)
    [14] 王瑾,张镭,王腾蛟等. 2012. 兰州附近山谷典型日环流特征对比分析. 干旱气象,30(2):169-177 doi: 10.3969/j.issn.1006-7639.2012.02.003

    Wang J,Zhang L,Wang T J,et al. 2012. Comparative analysis of mountain-valley wind circulation characteristics over semi-arid areas nearby Lanzhou. J Arid Meteor,30(2):169-177 (in Chinese) doi: 10.3969/j.issn.1006-7639.2012.02.003
    [15] 席世平,寿绍文,郑世林等. 2007. 复杂地形下山谷风的数值模拟. 气象与环境科学,30(3):41-44 doi: 10.3969/j.issn.1673-7148.2007.03.009

    Xi S P,Shou S W,Zheng S L,et al. 2007. Numerical simulation of mountain-valley wind in the complex terrain. Meteor Environ Sci,30(3):41-44 (in Chinese) doi: 10.3969/j.issn.1673-7148.2007.03.009
    [16] 张强,吕世化,张广庶. 2003. 山谷城市大气边界层结构及输送能力. 高原气象,22(4):346-353 doi: 10.3321/j.issn:1000-0534.2003.04.005

    Zhang Q,Lü S H,Zhang G S. 2003. The structure of atmospheric boundary layer over valley city and its transfer ability. Plateau Meteor,22(4):346-353 (in Chinese) doi: 10.3321/j.issn:1000-0534.2003.04.005
    [17] 张人文,范绍佳,李颖敏. 2012. 2008年秋季从化山谷风观测研究. 热带气象学报,28(1):134-139 doi: 10.3969/j.issn.1004-4965.2012.01.015

    Zhang R W,Fan S J,Li Y M. 2012. Observational study of mountain-valley breeze over Conghua in 2008 fall. J Trop Meteor,28(1):134-139 (in Chinese) doi: 10.3969/j.issn.1004-4965.2012.01.015
    [18] Chow F K,De Wekker S F J,Snyder B J. 2012. Mountain Weather Research and Forecasting:Recent Progress and Current Challenges. Dordrecht:Springer,750pp
    [19] Coulter R L,Martin T J,Porch W M. 1991. A comparison of nocturnal drainage flow in three tributaries. J Appl Meteor,30(2):157-169 doi: 10.1175/1520-0450(1991)030<0157:ACONDF>2.0.CO;2
    [20] Doyle J D,Shapiro M A. 2000. A multi-scale simulation of an extreme downslope windstorm over complex topography. Meteor Atmos Phys,74(1-4):83-101 doi: 10.1007/s007030070027
    [21] Doyle J D,Durran D R. 2002. The dynamics of mountain-wave-induced rotors. J Atmos Sci,59(2):186-201 doi: 10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2
    [22] Good R E, Beland R W, Brown J H, et al. 1986. Evidence of atmospheric gravity wave perturbations of the Brunt-Vaisala frequency in the atmosphere∥Bowhill S A, Edwards B. Middle Atmosphere Program, Handbook For Map, 20: 111-117
    [23] Hidalgo J,Pigeon G,Masson V. 2008. Urban-breeze circulation during the CAPITOUL experiment:Observational data analysis approach. Meteor Atmos Phys,102(3-4):223-241 doi: 10.1007/s00703-008-0329-0
    [24] Horst T W,Doran J C. 1986. Nocturnal drainage flow on simple slopes. Bound Layer Meteor,34(3):263-286 doi: 10.1007/BF00122382
    [25] Kossman M,Sturman A P. 2003. Pressure-driven channeling effects in bent valleys. J Appl Meteor,42(1):151-158 doi: 10.1175/1520-0450(2003)042<0151:PDCEIB>2.0.CO;2
    [26] Kuwagata T,Kondo J. 1989. Observation and modeling of thermally induced upslope flow. Bound Layer Meteor,49(3):265-293 doi: 10.1007/BF00120973
    [27] Lee X,Hu X Z. 2002. Forest-air fluxes of carbon,water and energy over non-flat terrain. Bound-Layer Meteor,103(2):277-301 doi: 10.1023/A:1014508928693
    [28] Long R R. 1954. Some aspects of the flow of stratified fluids:Ⅱ. Experiments with a two-fluid system. Tellus,6(2):97-115 doi: 10.3402/tellusa.v6i2.8731
    [29] McKee T B,O’Neal R D. 1989. The role of valley geometry and energy budget in the formation of nocturnal valley winds. J Appl Meteor,28(6):445-456 doi: 10.1175/1520-0450(1989)028<0445:TROVGA>2.0.CO;2
    [30] Miller S T K,Keim B D,Talbot R W,et al. 2003. Sea breeze:Structure,forecasting,and impacts. Rev Geophys,41(3):1011 doi: 10.1029/2003RG000124
    [31] Moroz W J. 1967. A lake breeze on the eastern shore of Lake Michigan:Observations and model. J Atmos Sci,24(4):337-355 doi: 10.1175/1520-0469(1967)024<0337:ALBOTE>2.0.CO;2
    [32] O'Steen L B. 2000. Numerical simulation of nocturnal drainage flows in idealized valley-tributary systems. J Appl Meteor,39(11):1845-1860 doi: 10.1175/1520-0450(2000)039<1845:NSONDF>2.0.CO;2
    [33] Rampanelli G,Zardi D,Rotunno R. 2004. Mechanisms of up-valley winds. J Atmos Sci,61(24):3097-3111 doi: 10.1175/JAS-3354.1
    [34] Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht:Springer,670pp
    [35] Tsuda T,VanZandt T E,Mizumoto M,et al. 1991. Spectral analysis of temperature and Brunt-Väisälä frequency fluctuations observed by radiosondes. J Geophys Res Atmos,96(D9):17265-17278 doi: 10.1029/91JD01944
    [36] Wagenbrenner N S,Forthofer J M,Lamb B K,et al. 2016. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos Chem Phys,16(8):5229-5241 doi: 10.5194/acp-16-5229-2016
    [37] Wagner A. 1938. Theorie und Beobachtung der periodischen Gebirgswinde (Theory and observation of periodic mountain winds). Gerlands Beitr Geophys, 52: 408-449 (in German)
    [38] Whiteman C D. 1990. Observations of thermally developed wind systems in mountainous terrain∥Banta R M,Berri G,Blumen W,et al. Atmospheric Processes over Complex Terrain. Boston:American Meteorological Society,5-42
    [39] Whiteman C D,Doran J C. 1993. The relationship between overlying synoptic-scale flows and winds within a valley. J Appl Meteor,32(11):1669-1682 doi: 10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2
    [40] Whiteman C D,Bian X D,Sutherland J L. 1999. Wintertime surface wind patterns in the Colorado River valley. J Appl Meteor,38(8):1118-1130 doi: 10.1175/1520-0450(1999)038<1118:WSWPIT>2.0.CO;2
    [41] Whiteman C D. 2000. Mountain Meteorology:Fundamentals and Applications. New York:Oxford University Press,355pp
    [42] Whiteman C D,Zhong S Y. 2008. Downslope flows on a low-angle slope and their interactions with valley inversions. Part Ⅰ:Observations. J Appl Meteor Climatol,47(7):2023-2038 doi: 10.1175/2007JAMC1669.1
    [43] Wood N. 2000. Wind flow over complex terrain:A historical perspective and the prospect for large-eddy modelling. Bound Layer Meteor,96(1-2):11-32 doi: 10.1023/A:1002017732694
    [44] Xue H L,Li J,Qian T T,et al. 2020. A 100-m-scale modeling study of a gale event on the lee side of a long narrow mountain. J Appl Meteor Climatol,59(1):23-45 doi: 10.1175/JAMC-D-19-0066.1
    [45] Xue H L,Giorgetta M A. 2021. A large-eddy simulation study on the diurnally evolving nonlinear trapped lee waves over a two-dimensional steep mountain. J Atmos Sci,78(2):399-415 doi: 10.1175/JAS-D-20-0085.1
    [46] Zhong S Y,Whiteman C D. 2008. Downslope flows on a low-angle slope and their interactions with valley inversions. Part Ⅱ:Numerical modeling. J Appl Meteor Climatol,47(7):2039-2057 doi: 10.1175/2007JAMC1670.1
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  7
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 录用日期:  2021-12-31
  • 修回日期:  2021-10-18
  • 网络出版日期:  2021-10-25

目录

    /

    返回文章
    返回