留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河套地区典型干线的形成及其在对流触发中的作用

张一平 俞小鼎 王迪 郝晓珍 王金兰

张一平,俞小鼎,王迪,郝晓珍,王金兰. 2022. 河套地区典型干线的形成及其在对流触发中的作用. 气象学报,80(1):39-53 doi: 10.11676/qxxb2022.009
引用本文: 张一平,俞小鼎,王迪,郝晓珍,王金兰. 2022. 河套地区典型干线的形成及其在对流触发中的作用. 气象学报,80(1):39-53 doi: 10.11676/qxxb2022.009
Zhang Yiping, Yu Xiaoding, Wang Di, Hao Xiaozhen, Wang Jinlan. 2022. The formation of typical dry lines in Hetao and its role in triggering convection. Acta Meteorologica Sinica, 80(1):39-53 doi: 10.11676/qxxb2022.009
Citation: Zhang Yiping, Yu Xiaoding, Wang Di, Hao Xiaozhen, Wang Jinlan. 2022. The formation of typical dry lines in Hetao and its role in triggering convection. Acta Meteorologica Sinica, 80(1):39-53 doi: 10.11676/qxxb2022.009

河套地区典型干线的形成及其在对流触发中的作用

doi: 10.11676/qxxb2022.009
详细信息
    作者简介:

    张一平,主要从事天气预报和强对流天气研究。E-mail:zhangyiping618@163.com

    通讯作者:

    俞小鼎,主要从事多普勒天气雷达应用,雷暴与强对流短时临近预报技术研究。E-mail:xdyu1962@126.com

  • 中图分类号: P458.2

The formation of typical dry lines in Hetao and its role in triggering convection

  • 摘要: 利用高空、加密地面、EC-ERA5(0.25º×0.25º)再分析和FY-2系列静止气象卫星云图(可见光星下点分辨率1.25 km,红外5 km)等资料,对黄河河套地区3次典型干线的形成及其在对流触发中的作用进行了详细分析。结果表明:(1)3次干线触发对流出现在中高纬度高空槽东移诱发蒙古气旋发展的背景下,高低空系统配置为前倾槽、高空西北气流及其携带的冷平流叠加在低层河套暖区之上,为大范围强对流天气提供了有利的环境条件;(2)3次干线均为蒙古气旋形势下黄土高原西高东低缓坡地形特有的现象,具有明显的地域特征,长600—800 km、宽80—100 km的显著干线呈北东北—南西南走向,与河套区域内海拔1300 m等高线走向基本吻合。受近于干绝热的下沉升温及高原西部下垫面非绝热加热快速升温降湿影响,在河套西部形成干热空气,其与东部暖湿气团在河套地区交汇是导致干线形成的主要原因之一;(3)干线具有明显的日变化特征,白天干线以西加热升温快,干线向东移动;夜间到凌晨干线西侧辐射降温快于东侧,干线向西后退。干线最强时段出现在14时(北京时,下同)前后,两侧露点梯度达10℃/(100 km)或以上,且伴有明显的偏西风和偏南风汇合(辐合)流场;(4)在干线及伴随的汇合(辐合)流场的作用下, 13—14时初始对流在干线附近生成,随后在干线湿侧附近加强,形成明显的线状对流云带,在高空偏西气流引导下,对流云带东移发展并逐渐远离干线,在河套东部有利的环境条件下,线状对流云带继续东移并扩展至地面干线以东约500 km的范围内,导致陕西中北部和华北部分地区出现大范围雷暴大风、局地冰雹甚至龙卷等强对流天气。根据河套地区3次典型干线的共同特征,给出了河套地区干线形成和强对流易发区的天气学模型,为今后同类天气形势下干线触发对流天气分析和预报提供参考和借鉴。

     

  • 图 1  2013 (a)、2016 (b) 和2017 (c)年个例当天20时重要天气报和当天08—20时间隔3 h地面干线动态 (地面干线,其北端2位数字表示北京时间,2013和2016年个例较细线表示11时河套内已出现露点梯度 3—6℃/(100 km)弱干线,四位数字表示大风和冰雹重要天气,其中11和39为指示码,其后数字分别为极大瞬时风速 (m/s) 和冰雹直径 (mm),如1118表示该站出现了18 m/s极大瞬时风速,3907表示该站出现了最大直径7 mm的冰雹)

    Figure 1.  The evolutions of surface dry lines (3 h intervals) from 08:00 to 20:00 BT for the cases in 2013 (a),2016 (b) and 2017 (c) and important reports at 20:00 BT (dry lines are denoted by ,Beijing time is denoted by two numbers ,the thin line represents the weak dry line with temperature gradient of 3—6℃/(100 km) appearing at 11:00 BT,four digit numbers show important weather of strong wind and hail,the signals after number 11 and 39 respectively indicate speed of maximum instantaneous wind (m/s) and the diameter of hail (mm),for example signal 1118 means the maximum instantaneous wind speed of 18 m/s appearing at the station,and signal 3907 indicates the hail with the maximum diameter of 7 mm occurring at the station )

    图 2  2013 (a)、2016 (b) 和2017 (c) 年个例当天08时500 hPa 位势高度 (黑色实线,间隔4 dagpm)、风场 (m/s) 和当天14时海平面气压 (蓝色双点划线) 叠加 ( 500 hPa槽线, 700 hPa槽线、切变线, 850 hPa切变线、辐合线)

    Figure 2.  Distributions of geopotential height (black contours,4 dagpm intervals),wind field (m/s) at 08:00 BT and sea-level pressure (blue double dash-dot-dot line) at 14:00 BT for the cases in 2013 (a),2016 (b) and 2017 (c) (The trough lines in 500 hPa are denoted by ,the trough and shear lines in 700 hPa are denoted by ,and 850 hPa shear and convergence lines are denoted by

    图 3  2013 (a)、2016 (b) 和2017 (c) 年个例当天14时地面图 (左上角数字表示温度,左下角数字表示露点,风矢表示定时观测2 min平均风) 和间隔1℃的露点等值线

    Figure 3.  Surface weather maps at 14:00 BT (the left and upper numbers denote temperature,the left and lower numbers indicate dew temperature and vectors show the average surface winds observed every 2 minutes) and dew point temperature isolines at intervals of 1℃ for the cases in 2013 (a),2016 (b) and 2017 (c)

    图 4  2013 (a1、a2)、2016 (b1、b2) 和2017 (c1、c2) 年个例当天08时700 hPa (a1、b1、c1) 和850 hPa (a2、b2、c2) 高空天气图 (红色数字为温度,左下角黑色数字为露点,右侧黑色数字为比湿,绿色数字分别为相应700、850 hPa与500 hPa温差, 700 hPa干线, 850 hPa干线, 湿轴, 700 hPa 9℃、850 hPa 20℃等温线, 700 hPa与 500 hPa温差20℃、850 hPa与 500 hPa温差30℃等值线;无说明符号同前,下同)

    Figure 4.  Synoptic weather maps in 700 hPa (a1,b1,c1) and 850 hPa (a2,b2,c2) at 08:00 BT for the cases of 2013 (a1,a2),2016 (b1,b2) and 2017 (c1,c2)(red numbers indicate temperature, black numbers at the left of wind shaft represent dew point temperature, black numbers at the right of wind shaft denote specific humidity, green numbers show temperature differences between 700 hPa and 500 hPa or between 850 hPa and 500 hPa. The dry lines in 700 hPa and 850 hPa are denoted by and ,respectively. The wet axis is denoted by . The red contours are the 9℃ in 700 hPaand 20℃ isotherms in 850 hPa,respectively. The isolines of 20℃ between 700 hPa and 500 hPa and 30℃between 850 hPa and 500 hPa are denoted by . Hereafter the symbols have the same meanings)

    图 5  2013 (a)、2016 (b) 和2017 (c) 年个例当天14时地面天气图并分别叠加对应的15时FY-2E (a)、14时FY-2G (b)、14时FY-2E (c) 可见光云图 (图中红色数字为温度,浅蓝色数字为露点,黄色为2 min平均风,橘黄色实线为干线)

    Figure 5.  Surface weather maps at 14:00 BT superimposed by visible cloud maps of satellites FY-2E at 15:00 BT (a),FY-2G at 14:00 BT (b) and FY-2E at 14:00 BT (c) for the cases in 2013 (a),2016 (b) and 2017 (c),respectively (red numbers indicate temperature,light blue numbers are dew point temperature,yellow numbers denote average wind speed at 2 min intervals and orange solid lines reflect dry lines)

    图 6  2013 (a)、2016 (b) 和2017 (c) 年个例当天 (分别对应17时FY-2E、17时FY-2G和16时FY-2E) 红外云图

    Figure 6.  Infrared cloud maps of satellite FY-2E at 17:00 BT,FY-2G at 17:00 BT and FY-2E at 16:00 BT respectively for the cases in 2013 (a),2016 (b) and 2017 (c)

    图 7  2013 (a)、2016 (b) 和2017 (c) 年个例14时对流有效位能 (色阶,单位:J/kg) 、850 hPa比湿 (蓝色等值线,单位:g/kg) 和0—6 km风垂直切变 (红色虚线,单位:m/s)

    Figure 7.  Distributions of CAPE (shaded, uint:J/kg),specific humidity at 850 hPa (blue solid lines,unit:g/kg) and vertical wind shear between 0—6 km ( red dash lines,unit:m/s) at 14:00 BT for the cases in 2013 (a),2016 (b) and 2017 (c)

    图 8  河套地区高清地图 (底图来自MICAPS4业务系统, 海拔1300 m等高线, 14时的地面干线位置,北端红色数字表示3次个例干线出现的日期和时间)

    Figure 8.  High-resolution map of the Hetao area (the base map is adopted from MICAPS4;the isoline of 1300 meter above sea level is denoted by indicates the position of surface drylines at 14:00 BT for the three cases,red numbers in the north reflect the occurrence times of dry lines)

    图 9  2013年9月12日08时银川 (a) 和延安 (b) T-lnp 图 (图中最右侧黑线分别为14时干侧乌审召站地面温度、露点订正的08时银川探空和14时湿侧神木站地面温度、露点订正的08时延安探空状态曲线)

    Figure 9.  The T-lnp chart of Yinchuan (a) and Yan'an (b) at 08:00 BT on 12 September 2013 (the right lines respectively indicate the soundings at 08:00 BT in the Yinchuan station revised by the surface temperature and dew point temperature of Wushenzhao station on the dry side of dry line at 14:00 BT and in the Yan'an station revised by the surface temperature and dew point temperature of Shenmu station on the wet side at 14:00 BT)

    图 10  美国落基山东面缓坡地形上的干线及其与地形关系垂直剖面示意 (干线位于黑色箭头处,A、B、C三点的探空曲线代表干线西边、近东边和远东部的典型探空示意)(引自Bluestein,1993;摘自俞小鼎等,2020a

    Figure 10.  The vertical profile diagram of dryline on the gentle slope east of the Rocky Mountains in U.S.A. and its relationship to topography (The dry line is located atthe head of the black arrow,and three radio soundings on A,B and C respectively indicate the west,near east and far east of dryline) (adopted from Bluestein,1993Yuxiaoding, et al,2020a

    图 11  河套干线触发强对流的模型 ( 500 hPa位势高度线,D地面气旋中心, 地面海平面气压等值线; 河套西部干暖气团, 中国中东部暖湿气团; 蒙古国中西部干冷气团, 河套干线强对流多发区,底图来自MICAPS4业务系统;其中箭头表示相应气流方向)

    Figure 11.  The synoptic model of drylines triggering severe convections ( geopotential height in 500 hPa,D surface cyclone center; contour of sea level pressure, dry and warm air mass in the west of Hetao; wet and warm air mass in the middle east of China, dry and cold air mass in central and western Mongolia; the regions where severe convections triggered by Hetao drylines occur frequently,the base map are adopted from MICAPS4 and the arrows indicate the direction of airstreams)

    表  1  3次个例14时地面图干线强盛阶段两侧代表站气象要素统计

    Table  1.   Statistics of meteorological elements on both sides of the drylines in the strong phase shown in the surface map at 14:00 BT


    个例
    T(℃)Td(℃)p(hPa)风向/风速(m/s)
    湿湿湿湿
    201326243151006.51008.4W/4S/4
    20162928414999.31001.5NW/6S/4
    20172522−3121003.91004.6W/6S/2
    下载: 导出CSV

    表  2  3次个例08时干线两侧附近代表性探空站 (银川和延安) 气象要素统计

    Table  2.   Statistics of meteorological elements at representative sounding stations (Yinchuan and Yan'an) near both sides of the drylines at 08:00 BT for the three cases



    个例
    700 hPa850 hPa
    T(℃)Td(℃)q(g/kg)T7-5(℃)T(℃)Td(℃)q(g/kg)T8-5(℃)
    湿湿湿湿湿湿湿湿
    201397−11−12523182115−3143123526
    2016108−3−145211824174156123527
    201797−12−923241921150124103627
    下载: 导出CSV
  • [1] 蔡则怡,李鸿洲,李焕安. 1988. 华北飑线系统的结构与演变特征. 大气科学,12(2):191-199 doi: 10.3878/j.issn.1006-9895.1988.02.11

    Cai Z Y,Li H Z,Li H A. 1988. Structure and evolution of squall line systems in North China. Sci Atmos Sinica,12(2):191-199 (in Chinese) doi: 10.3878/j.issn.1006-9895.1988.02.11
    [2] 陈明轩,王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟. 气象学报,70(3):371-386 doi: 10.11676/qxxb2012.033

    Chen M X,Wang Y C. 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China. Acta Meteor Sinica,70(3):371-386 (in Chinese) doi: 10.11676/qxxb2012.033
    [3] 戴建华,陶岚,丁杨等. 2012. 一次罕见飑前强降雹超级单体风暴特征分析. 气象学报,70(4):609-627 doi: 10.11676/qxxb2012.050

    Dai J H,Tao L,Ding Y,et al. 2012. Case analysis of a large hail-producing severe supercell ahead of a squall line. Acta Meteor Sinica,70(4):609-627 (in Chinese) doi: 10.11676/qxxb2012.050
    [4] 丁一汇. 1978. 强对流天气的分析和预报. 气象,4(5):15-17 doi: 10.7519/j.issn.1000-0526.1978.05.007

    Ding Y H. 1978. Analysis and forecast of severe convective weather. Meteor Mon,4(5):15-17 (in Chinese) doi: 10.7519/j.issn.1000-0526.1978.05.007
    [5] 方祖亮,俞小鼎,王秀明. 2020. 东北暖季干线统计分析. 气象学报,78(2):260-276

    Fang Z L,Yu X D,Wang X M. 2020. Statistical analysis of drylines in Northeast China. Acta Meteor Sinica,78(2):260-276 (in Chinese)
    [6] 费海燕,王秀明,周小刚等. 2016. 中国强雷暴大风的气候特征和环境参数分析. 气象,42(12):1513-1521 doi: 10.7519/j.issn.1000-0526.2016.12.009

    Fei H Y,Wang X M,Zhou X G,et al. 2016. Climatic characteristics and environmental parameters of severe thunderstorm gales in China. Meteor Mon,42(12):1513-1521 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.12.009
    [7] 蓝渝,张涛,郑永光等. 2013. 国家级中尺度天气分析业务技术进展Ⅱ:对流天气中尺度过程分析规范和支撑技术. 气象,39(7):901-910 doi: 10.7519/j.issn.1000-0526.2013.07.011

    Lan Y,Zhang T,Zheng Y G,et al. 2013. Advances of mesoscale convective weather analysis in NMCⅡ:Mesoscale nowcasting analysis and supporting techniques. Meteor Mon,39(7):901-910 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.07.011
    [8] 雷蕾,孙继松,魏东. 2011. 利用探空资料判别北京地区夏季强对流的天气类别. 气象,37(2):136-141 doi: 10.7519/j.issn.1000-0526.2011.02.002

    Lei L,Sun J S,Wei D. 2011. Distinguishing the category of the summer convective weather by sounding data in Beijing. Meteor Mon,37(2):136-141 (in Chinese) doi: 10.7519/j.issn.1000-0526.2011.02.002
    [9] 雷蕾,孙继松,王国荣等. 2012. 基于中尺度数值模式快速循环系统的强对流天气分类概率预报试验. 气象学报,70(4):752-765 doi: 10.11676/qxxb2012.061

    Lei L,Sun J S,Wang G R,et al. 2012. An experimental study of the summer convective weather categorical probability forecast based on the rapid updated cycle system for the Beijing area (BJ-RUC). Acta Meteor Sinica,70(4):752-765 (in Chinese) doi: 10.11676/qxxb2012.061
    [10] 雷雨顺,吴宝俊,吴正华. 1978. 用不稳定能量理论分析和预报夏季强风暴的一种方法. 大气科学,2(4):297-306 doi: 10.3878/j.issn.1006-9895.1978.04.04

    Lei Y S,Wu B J,Wu Z H. 1978. A method for analysing and forecasting the local severe storms in summer using the theory of instability energy. Sci Atmos Sinica,2(4):297-306 (in Chinese) doi: 10.3878/j.issn.1006-9895.1978.04.04
    [11] 李斯荣,苗爱梅,王洪霞. 2019. 山西秋季一次飑线过程的云图特征及维持机制. 干旱气象,37(2):312-321

    Li S R,Miao A M,Wang H X. 2019. Cloud image characteristics and maintaining mechanism of a squall line in autumn in Shanxi Province. J Arid Meteor,37(2):312-321 (in Chinese)
    [12] 孟妙志,卢晔,王仲文等. 2017. 关中秋季飑线天气成因和中尺度特征分析. 陕西气象,(2):1-6 doi: 10.3969/j.issn.1006-4354.2017.02.001

    Meng M Z,Lu Y,Wang Z W,et al. 2017. Analysis on the causes and mesoscale features of autumn squall line weather in Guanzhong. J Shaanxi Meteor,(2):1-6 (in Chinese) doi: 10.3969/j.issn.1006-4354.2017.02.001
    [13] 潘留杰,张宏芳,侯建忠等. 2015. 弱天气系统强迫下黄土高原强对流云的初生及演变. 高原气象,34(4):982-990 doi: 10.7522/j.issn.1000-0534.2014.00015

    Pan L J,Zhang H F,Hou J Z,et al. 2015. Initiation and evolution of storm over Loess Plateau for weak synoptic forcing situations. Plateau Meteor,34(4):982-990 (in Chinese) doi: 10.7522/j.issn.1000-0534.2014.00015
    [14] 覃丹宇,方宗义. 2014. 利用静止气象卫星监测初生对流的研究进展. 气象,40(1):7-17 doi: 10.7519/j.issn.1000-0526.2014.01.002

    Qin D Y,Fang Z Y. 2014. Research progress of geostationary satellite-based convective initiation. Meteor Mon,40(1):7-17 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.01.002
    [15] 孙继松,戴建华,何立富等. 2014. 对流天气预报的基本原理与技术方法—中国强对流天气预报手册. 北京:气象出版社,282pp

    Sun J S,Dai J H,He L F,et al. 2014. The Basic Principles and Methods of Convective Weather Forecasting:China Convective Weather Forecasting Manual. Beijing:China Meteorological Press,282pp (in Chinese)
    [16] 孙淑清,孟婵. 1992. 中-β尺度干线的形成与局地强对流暴雨. 气象学报,50(2):180-189. Sun S Q,Meng C. 1992. The formation of a meso-β dry line and local convective rainstorm. Acta Meteor Sinica,50(2):181-189.
    [17] 王迪,牛淑贞,曾明剑等. 2020. 河南省分类强对流环境物理条件特征分析. 气象,46(5):618-628 doi: 10.7519/j.issn.1000-0526.2020.05.003

    Wang D,Niu S Z,Zeng M J,et al. 2020. Analysis on the characteristics of environmental and physical conditions for the classified severe convections in Henan province. Meteor Mon,46(5):618-628 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.05.003
    [18] 王秀明,俞小鼎,周小刚. 2015. 中国东北龙卷研究:环境特征分析. 气象学报,73(3):425-441 doi: 10.11676/qxxb2015.031

    Wang X M,Yu X D,Zhou X G. 2015. Study of northeast China torandoes:The environmental characteristics. Acta Meteor Sinica,73(3):425-441 (in Chinese) doi: 10.11676/qxxb2015.031
    [19] 许爱华,孙继松,许东蓓等. 2014. 中国中东部强对流天气的天气形势分类和基本要素配置特征. 气象,40(4):400-411 doi: 10.7519/j.issn.1000-0526.2014.04.002

    Xu A H,Sun J S,Xu D B,et al. 2014. Basic synoptic situation classification and element character of severe convection in China. Meteor Mon,40(4):400-411 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.04.002
    [20] 许晶. 2016. 2016年6月9日龙卷、冰雹天气的多普勒雷达特征分析. 农村经济与科技,27(12):43,45

    Xu J. 2016. Analysis of Doppler radar features of tornado and hail weather on June 9,2016. Rural Econ Sci Technol,27(12):43,45 (in Chinese)
    [21] 杨波,郑永光,蓝渝等. 2017. 国家级强对流天气综合业务支撑体系建设. 气象,43(7):845-855 doi: 10.7519/j.issn.10000526.2017.07.008

    Yang B,Zheng Y G,Lan Y,et al. 2017. Development and construction of the supporting platform for national severe convective weather forecasting and service. Meteor Mon,43(7):845-855 (in Chinese) doi: 10.7519/j.issn.10000526.2017.07.008
    [22] 杨吉,郑媛媛,徐芬. 2020. 江淮地区一次冰雹过程的双线偏振雷达观测分析. 气象学报,78(4):568-579 doi: 10.11676/qxxb2020.031

    Yang J,Zheng Y Y,Xu F. 2020. An analysis of a hail case over the Yangtze and Huai River Basin based on dual-polarization radar observations. Acta Meteor Sinica,78(4):568-579 (in Chinese) doi: 10.11676/qxxb2020.031
    [23] 俞小鼎,姚秀萍,熊廷南等. 2006a. 多普勒天气雷达原理与业务应用. 北京:气象出版社,314pp

    Yu X D,Yao X P,Xiong T N,et al. 2006a. Doppler Weather Radar Principle and Business Application. Beijing:China Meteorological Press,314pp (in Chinese)
    [24] 俞小鼎,张爱民,郑媛媛等. 2006b. 一次系列下击暴流事件的多普勒天气雷达分析. 应用气象学报,17(4):385-393

    Yu X D,Zhang A M,Zheng Y Y,et al. 2006b. Doppler radar analysis on a series of downburst events. J Appl Meteor Sci,17(4):385-393 (in Chinese)
    [25] 俞小鼎,郑媛媛,廖玉芳等. 2008. 一次伴随强烈龙卷的强降水超级单体风暴研究. 大气科学,32(3):508-522 doi: 10.3878/j.issn.1006-9895.2008.03.08

    Yu X D,Zheng Y Y,Liao Y F,et al. 2008. Observational investigation of a tornadic heavy precipitation supercell storm. Chinese J Atmos Sci,32(3):508-522 (in Chinese) doi: 10.3878/j.issn.1006-9895.2008.03.08
    [26] 俞小鼎,周小刚,王秀明. 2012. 雷暴与强对流临近天气预报技术进展. 气象学报,70(3):311-337 doi: 10.11676/qxxb2012.030

    Yu X D,Zhou X G,Wang X M. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica,70(3):311-337 (in Chinese) doi: 10.11676/qxxb2012.030
    [27] 俞小鼎,王秀明,李万莉等. 2020a. 雷暴与强对流临近预报. 北京:气象出版社,416pp

    Yu X D,Wang X M,Li W L,et al. 2020a. Thunderstorms and Severe Convection Nowcasting. Beijing:China Meteorological Press,416pp (in Chinese)
    [28] 俞小鼎,郑永光. 2020b. 中国当代强对流天气研究与业务进展. 气象学报,78(3):391-418

    Yu X D,Zheng Y G. 2020b. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica,78(3):391-418 (in Chinese)
    [29] 曾明剑,王桂臣,吴海英等. 2015. 基于中尺度数值模式的分类强对流天气预报方法研究. 气象学报,73(5):868-882 doi: 10.11676/qxxb2015.055

    Zeng M J,Wang G C,Wu H Y,et al. 2015. Study of the forecasting method for the classified severe convection weather based on a meso-scale numerical model. Acta Meteor Sinica,73(5):868-882 (in Chinese) doi: 10.11676/qxxb2015.055
    [30] 张鸿发,龚乃虎,贾伟等. 1997. 平凉地区强对流钩状回波特征的观测研究. 大气科学,21(4):401-412 doi: 10.3878/j.issn.1006-9895.1997.04.03

    Zhang H F,Gong N H,Jia W,et al. 1997. Observational investigation of characteristics of severe convective hook echo in Pingliang region. Sci Atmos Sinica,21(4):401-412 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.04.03
    [31] 张鸿发,左洪超,郄秀书等. 2002. 平凉冰雹云回波特征分析. 气象学报,60(1):110-115 doi: 10.3321/j.issn:0577-6619.2002.01.013

    Zhang H F,Zuo H C,Qie X S,et al. 2002. Analysis of echo characteristics of Pingliang hailstorm. Acta Meteor Sinica,60(1):110-115 (in Chinese) doi: 10.3321/j.issn:0577-6619.2002.01.013
    [32] 张涛,蓝渝,毛冬艳等. 2013. 国家级中尺度天气分析业务技术进展Ⅰ:对流天气环境场分析业务技术规范的改进与产品集成系统支撑技术. 气象,39(7):894-900 doi: 10.7519/j.issn.1000-0526.2013.07.010

    Zhang T,Lan Y,Mao D Y,et al. 2013. Advances of mesoscale convective weather analysis in NMCⅠ:Convective weather environment analysis and supporting techniques. Meteor Mon,39(7):894-900 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.07.010
    [33] 张小玲,张涛,刘鑫华等. 2010. 中尺度天气的高空地面综合图分析. 气象,36(7):143-150 doi: 10.7519/j.issn.1000-0526.2010.07.021

    Zhang X L,Zhang T,Liu X H,et al. 2010. Mesoscale weather chart analysis techinique. Meteor Mon,36(7):143-150 (in Chinese) doi: 10.7519/j.issn.1000-0526.2010.07.021
    [34] 张小玲,郑永光,杨波. 2019. 强对流天气研究和预报技术. 北京:气象出版社,522 pp. Zhang X L,Zheng Y G,Yang B. 2019. Severe Convection Weather Research and Forecasting Technology. Beijing:China Meteorological Press,522pp.
    [35] 张一平,俞小鼎,王迪等. 2021. 河套及周边地区干线触发对流天气特征初步分析. 高原气象,40(5):1024-1037

    Zhang Y P,Yu X D,Wang D,et al. 2021. A preliminary analysis of the characteristics of drylines and its triggering convections in the Hetao and surrounding regions. Plateau Meteor,40(5):1024-1037 (in Chinese)
    [36] 郑媛媛,俞小鼎,方翀等. 2004. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报,62(3):317-328 doi: 10.3321/j.issn:0577-6619.2004.03.006

    Zheng Y Y,Yu X D,Fang C,et al. 2004. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica,62(3):317-328 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.03.006
    [37] 郑永光,张小玲,周庆亮等. 2010. 强对流天气短时临近预报业务技术进展与挑战. 气象,36(7):33-42 doi: 10.7519/j.issn.1000-0526.2010.07.008

    Zheng Y G,Zhang X L,Zhou Q L,et al. 2010. Review on severe convective weather short-term forecasting and nowcasting. Meteor Mon,36(7):33-42 (in Chinese) doi: 10.7519/j.issn.1000-0526.2010.07.008
    [38] 郑永光,林隐静,朱文剑等. 2013. 强对流天气综合监测业务系统建设. 气象,39(2):234-240 doi: 10.7519/j.issn.1000-0526.2013.02.013

    Zheng Y G,Lin Y J,Zhu W J,et al. 2013. Operational system of severe convective weather comprehensive monitoring. Meteor Mon,39(2):234-240 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.02.013
    [39] Bluestein H B. 1993. Synoptic-Dynamic Meteorology in Midlatitudes: Volume Ⅱ: Observations and Theory of Weather Systems. Oxford: Oxford University Press
    [40] Doswell Ⅲ C A. 1987. The distinction between large-scale and mesoscale contribution to severe convection:A case study example. Wea Forecast,2(1):3-16 doi: 10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2
    [41] Fujita T. 1958. Structure and movement of a dry front. Bull Amer Meteor Soc,39(11):574-582 doi: 10.1175/1520-0477-39.11.574
    [42] Hoch J,Markowski P. 2005. A climatology of springtime dryline position in the U. S. Great Plains region. J Climate,18(12):2132-2137 doi: 10.1175/JCLI3392.1
    [43] Markowski P M,Richardson Y P. 2010. Mesoscale Meteorology in Midlatitudes. Hoboken:Wiley,430pp
    [44] Owen J. 1966. A study of thunderstorm formation along dry lines. J Appl Meteor Climatol,5(1):58-63 doi: 10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2
    [45] Schaefer J T. 1973. The motion and morphology of the dryline. NOAA Tech. Memo. ERL NSSL-66(NTIS#COM-74-10043),81pp
    [46] Schaefer J T. 1974. The life cycle of the dryline. J Appl Meteor Climatol,13(4):444-449 doi: 10.1175/1520-0450(1974)013<0444:TLCOTD>2.0.CO;2
    [47] Schaefer J T. 1986. The dryline∥Ray P S. Mesoscale Meteorology and Forecasting. Boston:American Meteorological Society,549-572
    [48] Schultz D M,Weiss C C,Hoffman P M. 2007. The synoptic regulation of dryline intensity. Mon Wea Rev,135(5):1699-1709 doi: 10.1175/MWR3376.1
    [49] Thompson R L,Edwards R. 2000. An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea Forecast,15(6):682-699 doi: 10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2
    [50] Wilson J W,Schreiber W E. 1986. Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon Wea Rev,114(12):2516-2536 doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2
    [51] Ziegler C L,Rasmussen E N. 1998. The initiation of moist convection at the dryline:Forecasting issues from a case study perspective. Wea Forecast,13(4):1106-1131 doi: 10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  31
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 录用日期:  2022-01-11
  • 修回日期:  2021-10-22
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-02-26

目录

    /

    返回文章
    返回