留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先进技术微波探测仪(ATMS)云液态水路径算法评估

董嫦娇 翁富忠

董嫦娇,翁富忠. 2022. 先进技术微波探测仪(ATMS)云液态水路径算法评估. 气象学报,80(2):334-348 doi: 10.11676/qxxb2022.010
引用本文: 董嫦娇,翁富忠. 2022. 先进技术微波探测仪(ATMS)云液态水路径算法评估. 气象学报,80(2):334-348 doi: 10.11676/qxxb2022.010
Dong Changjiao, Weng Fuzhong. 2022. Assessments of cloud liquid water algorithms using advanced technology microwave sounder (ATMS) observations. Acta Meteorologica Sinica, 80(2):334-348 doi: 10.11676/qxxb2022.010
Citation: Dong Changjiao, Weng Fuzhong. 2022. Assessments of cloud liquid water algorithms using advanced technology microwave sounder (ATMS) observations. Acta Meteorologica Sinica, 80(2):334-348 doi: 10.11676/qxxb2022.010

先进技术微波探测仪(ATMS)云液态水路径算法评估

doi: 10.11676/qxxb2022.010
基金项目: 国家重点研发计划项目(2018YFC1506501、2021YFB3900400)、国家自然科学基金项目(U2142212)
详细信息
    作者简介:

    董嫦娇,主要从事气象灾害关键参数高精度反演研究。E-mail:dongchangjiao@gmail.com

    通讯作者:

    翁富忠,主要从事卫星遥感、辐射传输、资料同化等方面研究。E-mail:wengfz@cma.gov.cn

  • 中图分类号: P426

Assessments of cloud liquid water algorithms using advanced technology microwave sounder (ATMS) observations

  • 摘要: 云液态水路径是气候和天气系统分析的重要参数,可以从卫星观测资料反演获得。目前,基于卫星微波探测仪器观测资料的云水算法可由23.8和31.4 GHz两个通道产生。本研究使用先进技术微波探测仪(ATMS)观测数据,对物理和经验两种算法反演出的云液态水路径进行验证评估。结果表明,经验算法和物理算法都可以描述云液态水在全球洋面上的分布,但是在中纬度地区数值差异较大。物理反演结果与再分析资料以及卫星可见光云图中的云分布更为一致。在中高纬度地区,经验算法受季节影响较大。灵敏度分析结果表明,物理算法误差受云层温度、海面温度和风速的影响。云层温度的不确定性可能是云液态水路径反演误差的主要来源。海面温度误差影响高液态水路径的反演,风速对低液态水路径的影响比高液态水路径更大。

     

  • 图 1  2018年7月8日ATMS全球海面云液态水反演结果 (a.ATMS观测亮温经验算法, b. ERA5再分析资料,c. ATMS观测亮温物理算法)

    Figure 1.  Cloud liquid water retrieved from ATMS over global oceans on 8 July 2018 (a. ATMS brightness temperature using the empirical algorithm,b. ERA5 reanalysis data, c. ATMS brightness temperature using the physical algorithm)

    图 2  2018年7月8日ATMS全球海面大气总可降水反演结果 (a. ATMS观测亮温经验算法, b. ERA5再分析资料,c. ATMS观测亮温物理算法)

    Figure 2.  Atmospheric total precipitable water retrieved from ATMS over global oceans on 8 July 2018 (a. the empirical algorithm,b. ERA5 reanalysis data, c. the physical algorithm)

    图 3  2018年7月8日全球海面云液态水路径差 (a. 物理算法与ERA5再分析资料的差,b. 经验算法与ERA5再分析资料的差)

    Figure 3.  Differences in cloud liquid water path between retrievals and ERA5 on 8 July 2018 (a. differences between the physical retrievals and ERA5, b. differences between the empirical algorithm and ERA5)

    图 4  2018年7月8日全球海面ATMS降轨观测亮温 (a. 通道1 (23.8 GHz) 观测亮温,b. 通道2 (31.4 GHz) 观测亮温)

    Figure 4.  ATMS brightness temperature from the descending orbit on 8 July 2018 (a. the observed brightness temperature of channel 1 (23.8 GHz), b. the observed brightness temperature of channel 2 (31.4 GHz))

    图 5  2018年7月8日和ATMS降轨匹配后的全球海面温度分布

    Figure 5.  Global sea surface temperature distribution matched with ATMS descending orbit on 8 July 2018

    图 6  利用ATMS观测亮温反演的2021年7月20日西北太平洋云液态水路径 (a. 经验算法 (升轨),b. 物理算法 (升轨), c. 经验算法 (降轨),d. 物理算法 (降轨))

    Figure 6.  Cloud liquid water retrieved from ATMS in the Northwest Pacific on 20 July 2021 (a. the empirical algorithm (the ascending orbit),b. the physical algorithm (the ascending orbit),c. the empirical algorithm (the decending orbit),d. the physical algorithm (the decending orbit))

    图 7  利用ATMS观测亮温反演的2021年7月20日西北太平洋大气总可降水量 (a. 经验算法 (升轨),b. 物理算法 (升轨), c. 经验算法 (降轨),d. 物理算法 (降轨))

    Figure 7.  Total precipitable water retrieved from ATMS in the Northwest Pacific on 20 July 2021 (a. the empirical algorithm (the ascending orbit),b. the physical algorithm (the ascending orbit),c. the empirical algorithm (the decending orbit),d. the physical algorithm (the decending orbit))

    图 8  2021年7月20日西北太平洋ATMS观测亮温 (a. 通道1 (23.8 GHz) 升轨,b. 通道2 (31.4 GHz) 升轨,c. 通道1 (23.8 GHz) 降轨,d. 通道2 (31.4 GHz) 降轨)

    Figure 8.  Brightness temperatures observed by ATMS in the Northwest Pacific on 20 July 2021 (a. channel 1 (23.8 GHz) ascending orbit,b. channel 2 (31.4 GHz) ascending orbit,c. channel 1 (23.8 GHz) descending orbit,d. channel 2 (31.4 GHz) descending orbit)

    Continued

    图 9  ATMS匹配的2021年7月20日西北太平洋海面风速 (a. 升轨,b. 降轨)

    Figure 9.  Wind speed over the Northwest Pacific Ocean on 20 July 2021 matched with ATMS (a. ascending orbit,b. descending orbit)

    图 10  2021年7月20日西北太平洋可见光云图

    Figure 10.  VIIRS visible band image over the Northwest Pacific on 20 July 2021

    图 11  2018年云液态水随纬度带分布结果 (a. 1月,b. 7月)

    Figure 11.  Zonal mean cloud liquid water in (a) January and (b) July,2018

    图 12  在不同大气和海洋条件下,由海面温度误差导致的云液态水误差

    Figure 12.  Cloud liquid water (CLW) errors caused by sea surface temperature (SST) errors under different atmospheric and surface conditions

    图 13  在不同大气和海洋条件下,由海面风速误差导致的云液态水误差

    Figure 13.  Cloud liquid water (CLW) errors caused by sea surface wind (SSW) speed errors under different atmospheric and surface conditions

    表  1  在AMSU-A四个通道用于总可降水和云液态水算法的计算参数

    Table  1.   Parameters calculated at four AMSU-A channels and used in total precipitable water and cloud liquid water algorithms

    频率23.8 GHz31.4 GHz50.3 GHz89 GHz
    κV4.80423×10−31.93241×10−33.76950×10−31.15839×10−3
    κLa11.18201×10−11.98774×10−14.53967×10−31.03486
    κLb1−3.48761×10−3−5.45692×10−3−9.68548×10−3−9.71510×10−3
    κLc15.01301×10−57.18339×10−58.57815×10−5−6.59140×10−5
    τOa03.21410×10−25.34214×10−26.26545×10−11.08333×10−1
    τOb0−6.31860×10−5−1.04835×10−4−1.09961×10−3−2.21042×10−4
    下载: 导出CSV
  • [1] 陈洪滨. 2002. 测量云液水柱含量的一个设想. 大气科学,26(5):695-701 doi: 10.3878/j.issn.1006-9895.2002.05.10

    Chen H B. 2002. A concept for measuring liquid water path from microwave attenuation along satellite-earth path. Chinese J Atmos Sci,26(5):695-701 (in Chinese) doi: 10.3878/j.issn.1006-9895.2002.05.10
    [2] 董佩明,刘健文,刘桂青等. 2014. ATMS卫星资料的同化应用及与AMSUA/MHS的比较研究. 热带气象学报,30(4):623-632 doi: 10.3969/j.issn.1004-4965.2014.04.003

    Dong P M,Liu J W,Liu G Q,et al. 2014. Study on the assimilation of ATMS satellite data and comparison with AMSUA/MHS. J Trop Meteor,30(4):623-632 (in Chinese) doi: 10.3969/j.issn.1004-4965.2014.04.003
    [3] 姚展予,李万彪,朱元竞等. 2003. 用TRMM/TMI估算HUBEX试验区的云中液态水. 气象学报,61(1):116-121 doi: 10.3321/j.issn:0577-6619.2003.01.012

    Yao Z Y,Li W B,Zhu Y J,et al. 2003. Estimation of cloud liquid water over the HUBEX area using TRMM/TMI. Acta Meteor Sinica,61(1):116-121 (in Chinese) doi: 10.3321/j.issn:0577-6619.2003.01.012
    [4] 姚展予,彭亮. 2009. 卫星微波被动遥感云中液态水的研究进展. 气象学报,67(2):331-341 doi: 10.3321/j.issn:0577-6619.2009.02.016

    Yao Z Y,Peng L. 2009. Advances in satellite passive microwave remote sensing of cloud liquid water. Acta Meteor Sinica,67(2):331-341 (in Chinese) doi: 10.3321/j.issn:0577-6619.2009.02.016
    [5] Alishouse J C,Snider J B,Westwater E R,et al. 1990. Determination of cloud liquid water content using the SSM/I. IEEE Trans Geosci Remote Sens,28(5):817-822 doi: 10.1109/36.58968
    [6] Ferraro R R,Weng F,Grody N C,et al. 1996. An eight-year (1987-1994) time series of rainfall,clouds,water vapor,snow cover,and sea ice derived from SSM/I measurements. Bull Amer Meteor Soc,77(5):891-906 doi: 10.1175/1520-0477(1996)077<0891:AEYTSO>2.0.CO;2
    [7] Goldberg M D,Weng F. 2006. Advanced technology microwave sounder∥Qu J J,Gao W,Kafatos M,et al. Earth Science Satellite Remote Sensing. Berlin,Heidelberg:Springer
    [8] Greenwald T J,Stephens G L,Vonder Haar T H,et al. 1993. A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations. J Geophys Res,98(D10):18471-18488 doi: 10.1029/93JD00339
    [9] Grody N,Zhao J,Ferraro R,et al. 2001. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J Geophys Res,106(D3):2943-2953 doi: 10.1029/2000JD900616
    [10] Grody N C,Gruber A,Shen W C. 1980. Atmospheric water content over the tropical Pacific derived from the Nimbus-6 scanning microwave spectrometer. J Appl Meteor,19(8):986-996 doi: 10.1175/1520-0450(1980)019<0986:AWCOTT>2.0.CO;2
    [11] Gui K,Che H Z,Chen Q L,et al. 2017. Evaluation of radiosonde,MODIS-NIR-Clear,and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos Res,197:461-473 doi: 10.1016/j.atmosres.2017.07.021
    [12] Hargens U,Simmer C,Ruprecht E. 1992. Remote sensing of cloud liquid water during ICE'89∥Proceedings of Specialist Meeting on Microwave Radiometry and Remote Sensing Applications. Boulder,Colorado,USA:NOAA,27-31
    [13] Liu G,Curry J A. 1999. Tropical ice water amount and its relations to other atmospheric hydrological parameters as inferred from satellite data. J Appl Meteor,38(8):1182-1194 doi: 10.1175/1520-0450(1999)038<1182:TIWAAI>2.0.CO;2
    [14] Stephens G L. 2005. Cloud feedbacks in the climate system:A critical review. J Climate,18(2):237-273 doi: 10.1175/JCLI-3243.1
    [15] Tang F,Zou X L. 2017. Liquid water path retrieval using the lowest frequency channels of Fengyun-3C Microwave Radiation Imager (MWRI). J Meteor Res,31(6):1109-1122 doi: 10.1007/s13351-017-7012-7
    [16] Weng F. 2014. Cloud liquid water∥Njoku E G. Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. New York: Springer
    [17] Weng F. 2017. Passive Microwave Remote Sensing of the Earth:For Meteorological Applications. Weinheim:Wiley,45-89
    [18] Weng F,Grody N C. 1994. Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I). J Geophys Res,99(D12):25535-25551 doi: 10.1029/94JD02304
    [19] Weng F,Grody N C,Ferraro R,et al. 1997. Cloud liquid water climatology from the special sensor microwave/imager. J Climate,10(5):1086-1098 doi: 10.1175/1520-0442(1997)010<1086:CLWCFT>2.0.CO;2
    [20] Weng F,Ferraro R R,Grody N C. 2000. Effects of AMSU cross-scan asymmetry of brightness temperatures on retrieval of atmospheric and surface parameters∥Pampaloni P,Paloscia S. Microwave Radiometry & Remote Sensing of the Earth's Surface and Atmosphere. Netherlands:VSP,255-262
    [21] Weng F,Yan B,Grody N C. 2001. Microwave land emissivity model. J Goephys Res,106(D17):20115-20123 doi: 10.1029/2001JD900019
    [22] Weng F,Zhao L,Ferraro R R,et al. 2003. Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci,38(4):8068
    [23] Weng F, Zou X, Sun N, et al. 2013. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J Geophys Res,118:11187-11200 doi: 10.1002/jgrd.50840
    [24] Wentz F J. 1997. A well-calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res,102(C4):8703-8718 doi: 10.1029/96JC01751
    [25] Yang J,Lyu W,Ma Y,et al. 2018a. Analyzing of cloud macroscopic characteristics in the Shigatse area of the Tibetan Plateau using the total-sky images. J Appl Meteor,57(9):1977-1987 doi: 10.1175/JAMC-D-18-0095.1
    [26] Yang J,Min Q L. 2018b. Retrieval of atmospheric profiles in the New York State Mesonet using one-dimensional variational algorithm. J Geophys Res,123(14):7563-7575 doi: 10.1029/2018JD028272
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  75
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 录用日期:  2022-03-11
  • 修回日期:  2021-11-29
  • 网络出版日期:  2021-11-30

目录

    /

    返回文章
    返回