留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季印度洋MJO活跃时间对中国长江流域降水日数的影响

雷徐奔 张文君 刘超

雷徐奔,张文君,刘超. 2022. 夏季印度洋MJO活跃时间对中国长江流域降水日数的影响. 气象学报,80(4):503-514 doi: 10.11676/qxxb2022.029
引用本文: 雷徐奔,张文君,刘超. 2022. 夏季印度洋MJO活跃时间对中国长江流域降水日数的影响. 气象学报,80(4):503-514 doi: 10.11676/qxxb2022.029
Lei Xuben, Zhang Wenjun, Liu Chao. 2022. Influence of MJO active days over the Indian Ocean on precipitation days in the reaches of the Yangtze River. Acta Meteorologica Sinica, 80(4):503-514 doi: 10.11676/qxxb2022.029
Citation: Lei Xuben, Zhang Wenjun, Liu Chao. 2022. Influence of MJO active days over the Indian Ocean on precipitation days in the reaches of the Yangtze River. Acta Meteorologica Sinica, 80(4):503-514 doi: 10.11676/qxxb2022.029

夏季印度洋MJO活跃时间对中国长江流域降水日数的影响

doi: 10.11676/qxxb2022.029
基金项目: 国家自然科学基金项目(42125501、42088101)
详细信息
    作者简介:

    雷徐奔,从事ENSO与海气相互作用研究。 E-mail:lxb@nuist.edu.cn

    通讯作者:

    张文君,从事ENSO机理及海陆气相互作用等方面研究。E-mail:zhangwj@nuist.edu.cn

  • 中图分类号: P46

Influence of MJO active days over the Indian Ocean on precipitation days in the reaches of the Yangtze River

  • 摘要: 利用1980—2020年中国753站逐日降水资料、NCEP/NCAR大气再分析资料以及哈得来中心的海表温度资料和实时多变量Madden-Julian振荡( MJO)指数,研究了MJO在印度洋地区(1—3位相)活跃日数对长江流域夏季降水日数的影响。结果表明两者存在显著的统计联系,在MJO活跃日数偏多的年份,MJO相关的西北太平洋反气旋环流异常有利于向长江中下游地区输送水汽,进而导致长江流域中下游范围内降水日数的增加,且这种影响主要体现在降水等级为大雨(25 mm/d)及以上强度的日数上。进一步研究发现,MJO在印度洋活跃日数与长江中下游夏季降水日数的关系存在年代际变化,两者显著的联系仅出现在2000年之后,之前的时段两者联系则较弱。这种关系的转变可能与印度洋海表温度变率减弱的背景有关,印度洋海洋年际变率变弱导致其对于长江中下游地区的影响减弱,进而使得MJO的调控作用凸显出来。夏季季节平均的印度洋MJO活跃日数可以对长江中下游的大雨以上的降水日数产生影响,且两者的关系在大约2000年之后变得尤为显著。

     

  • 图 1  (a) 1980—2020年夏季平均的20—90 d滤波的向外长波辐射方差 (色阶,单位:(W/m22) 及850 hPa水平风场 (矢线) 分布;1980—2020年MJO处于1—3位相 (b) 和 5—7位相 (c) 时的向外长波辐射 (等值线,W/m2) 及850 hPa风场 (矢线,单位:m/s) 异常场的合成 (红、蓝色阴影分别代表OLR场正、负异常通过90%信度水平的区域,风场仅给出通过90%信度水平的区域)

    Figure 1.  (a) Climatological distributions of 20—90 d filtered OLR variance (shadings,(W/m22) and 850 hPa wind (vectors,m/s) during boreal summer from 1980—2020; Composites of daily OLR (shadings,W/m2) and 850 hPa wind anomalies during MJO active days during (b) phases 1—3 and (c) phases 5—7 (The red and blue shadings represent positive and negotive OLR anomalies exceeding the 90% confidence level,and the wind anomalies are shown only when the zonal or meridional wind anomalies are significant at the 90% confidence level)

    图 2  夏季MJO 1—3位相 (a) 和5—7位相 (b) 合成的850 hPa位势高度场 (等值线,单位:dagpm) 及低层水汽输送 (矢线,1000—700 hPa积分,单位:kg/(m·s)) 异常 (阴影为高度场通过90%信度水平的区域,绿色矢量表示水汽输送通过90%信度水平区域)

    Figure 2.  Composites of 850 hPa geopotential height (contours,dagpm) and low-level water vapor transport (vectors,kg/(m·s))anomalies during MJO (a) phases 1—3 and (b) phases 5—7 (hadings represent the geopotential height values above the 90% confidence level,and the green vectors represent the zonal or meridional wind above the 90% confidence level)

    图 3  1980—2020每年夏季MJO在1—3位相 (a、c) 和5—7位相 (b、d) 的停留日数 (a、b) 和平均强度 (c、d)的异常

    Figure 3.  Evolution of MJO active day anomalies for (a) phases 1—3 and (b) phases 5—7,and seasonal average of MJO intensity for (c) phases 1—3 and (d) phases 5—7 during the summers of 1980—2020

    图 4  夏季MJO 1—3位相 (a) 活跃日数和 (b) 平均强度回归的中国南方地区台站降水日数;(c)、(d) 与 (a)、(b) 类似但为CPC格点降水资料 (打点部分为通过90%信度水平的区域)

    Figure 4.  Precipitation days regressed onto MJO (a) active days and (b) average intensity during phases 1—3 based on station data in southern China;(c),(d) are same as (a),(b) but based on global unified gauge-based analysis of daily precipitation (The black dots represent values above the 90% confidence level)

    图 5  夏季MJO位于1—3位相日数回归的不同量级 (a. 小雨,b. 中雨,c. 大雨及以上) 的降水日数 (打点部分为通过90%信度水平的区域)

    Figure 5.  Regressions of light precipitation days (a),moderate precipitation days (b),and heavy precipitation days (c) on MJO active days during phases 1—3 in 1980—2000 (The black dots represent values above the 90% confidence level)

    图 6  (a)夏季MJO位于1—3位相的活跃日数 (黑色实线) 与长江中下游区域 (28°—32°N,105°—120°E) 平均降水日数 (蓝色实线) 的演变,(b)夏季MJO位于1—3位相的活跃日数分别与10 a高通滤波的长江中下游区域总降水日数 (黑线)、小雨日数 (绿线)、中雨日数 (黄线),大雨日数 (红线) 的11 a的滑动相关(水平红色虚线为相关系数90%信度水平临界线)

    Figure 6.  (a) Evolution of MJO active days during phases 1—3 (black solid line) and area-averaged precipitation days (blue solid line) over the middle and lower reaches of the Yangtze River (28°—32°N,105°—120°E),(b) 11-year running correlation between MJO active days and light (green line),moderate (yellow line),heavy (red line),and total (black line) precipitation days (the red dash line indicates the 90% confidence level)

    图 7  1980—2000年 (a) 和2001—2020年 (b) 夏季MJO 1—3位相停留日数回归的中国南方地区降水日数 (打点部分为通过90%信度水平的区域)

    Figure 7.  Precipitation days regressed onto MJO active days during phases 1—3 for (a) 1980—2000 and (b) 2001—2020 (The black dots represent the values above the 90% confidence level)

    图 8  1980—2000年 (a—c) 和2001—2020年 (d—f) 夏季MJO 1—3位相停留日数回归的小雨 (a、d)、中雨 (b、e) 和大雨及以上 (c、f) 日数的空间分布 (打点部分为通过90%信度水平的区域)

    Figure 8.  Regressions of light precipitation days (a,d),moderate precipitation days (b,e),and heavy precipitation days (c,f) onto MJO active days during phases 1—3 from 1980 to 2000 (a—c) and 2001 to 2020 (d—f) (The black dots represent the values above the 90% confidence level)

    图 9  1980—2000年 (a) 和2001—2020年 (b) 两个时段MJO位于1—3位相时的OLR场 (等值线,单位:W/m2) 和风场 (矢线,单位:m/s) 异常,以及 (c) 两个时段的差值场 ((b) 与 (a) 之差;阴影为OLR场通过90%信度水平的区域,风场仅给出通过90%信度水平的部分)

    Figure 9.  Composites of 850 hPa wind (vectors,m/s) and OLR (contours,W/m2) anmalies in phases 1—3 during 1980—2000 (a) and 2001—2020 (b),and (c) their difference (Shadings represent OLR anomalies above the 90% confidence level,and the wind anomalies are shown only when the zonal or meridional wind anomalies are significant at the 90% confidence level)

    图 10  1980—2000年 (a—c) 和2001—2020年 (d—f) 夏季印度洋区域(20°S—20°N,40°—110°E) 平均海温回归的小雨 (a、d)、中雨 (b、e) 和大雨及以上 (c、f) 日数的空间分布 (打点部分为通过90%信度水平的区域)

    Figure 10.  Precipitation days of (a,d) light precipitation days,(b,e) moderate precipitation days,and (c,f) heavy precipitation days regressed onto area-averaged sea surface temperature over the Indian Ocean (20°S—20°N,40°—110°E) from 1980 to 2000 (a—c) and 2001 to 2020 (d—f) (The black dots represent values above the 90% confidence level)

    图 11  印度洋地区1980—2000年(a)和2001—2020年(b)海温标准差 (单位:°C),以及(c)两个时段的差值 ((b)与(a)之差,打点部分为通过90%信度水平的区域)

    Figure 11.  Standard deviations of sea surface temperature (unit:°C) over the Indian Ocean in (a) 1980—2000,(b) 2001—2020 and (c) their differences (The black dots in (c) represent values above the 90% confidence level)

  • [1] 白旭旭,李崇银,谭言科等. 2011. MJO对我国东部春季降水影响的分析. 热带气象学报,27(6):814-822 doi: 10.3969/j.issn.1004-4965.2011.06.004

    Bai X X,Li C Y,Tan Y K,et al. 2011. Analysis of the Madden-Julian oscillation impacts on the spring rainfall in East China. J Trop Meteor,27(6):814-822 (in Chinese) doi: 10.3969/j.issn.1004-4965.2011.06.004
    [2] 陈文. 2002. El Niño和La Niña事件对东亚冬夏季风循环的影响. 大气科学,26(5):595-610 doi: 10.3878/j.issn.1006-9895.2002.05.02

    Chen W. 2002. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chinese J Atmos Sci,26(5):595-610 (in Chinese) doi: 10.3878/j.issn.1006-9895.2002.05.02
    [3] 丁一汇,梁萍. 2010. 基于MJO的延伸预报. 气象,36(7):111-122 doi: 10.7519/j.issn.1000-0526.2010.07.018

    Ding Y H,Liang P. 2010. Extended range forecast basing on MJO. Meteor Mon,36(7):111-122 (in Chinese) doi: 10.7519/j.issn.1000-0526.2010.07.018
    [4] 何金海,梁萍,孙国武. 2013. 延伸期预报的思考及其应用研究进展. 气象科技进展,3(1):11-17

    He J H,Liang P,Sun G W. 2013. Consideration on extended-range forecast and its application study. Adv Meteor Sci Technol,3(1):11-17 (in Chinese)
    [5] 黄荣辉,徐予红,周连童. 1999. 我国夏季降水的年代际变化及华北干旱化趋势. 高原气象,18(4):465-476 doi: 10.3321/j.issn:1000-0534.1999.04.001

    Huang R H,Xu Y H,Zhou L T. 1999. The interdecadal variation of summer precipitations in China and the drought trend in north China. Plateau Meteor,18(4):465-476 (in Chinese) doi: 10.3321/j.issn:1000-0534.1999.04.001
    [6] 靳振华,管兆勇. 2013. 海洋性大陆区域OLR的气候低频振荡及其与中国降水的可能联系. 热带气象学报,29(5):705-716 doi: 10.3969/j.issn.1004-4965.2013.05.001

    Jin Z H,Guan Z Y. 2013. The climatological low-frequency oscillations in Maritime Continent region and their possible relations with precipitation changes in China. J Trop Meteor,29(5):705-716 (in Chinese) doi: 10.3969/j.issn.1004-4965.2013.05.001
    [7] 李海燕, 张文君, 何金海. 2016. ENSO及其组合模态对中国东部各季节降水的影响. 气象学报, 74(3): 322-334

    Li H Y, Zhang W J, He J H. Influences of ENSO and its combination mode on seasonal precipitation over eastern China. Acta Meteor Sinica, 74(3): 322-334. (in Chinese)
    [8] 李汀,严欣,琚建华. 2012. MJO活动对云南5月降水的影响. 大气科学,36(6):1101-1111 doi: 10.3878/j.issn.1006-9895.2012.11152

    Li T,Yan X,Ju J H. 2012. Impact of MJO activities on precipitation in May over Yunnan. Chinese J Atmos Sci,36(6):1101-1111 (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.11152
    [9] 李文铠,何金海,祁莉等. 2014. MJO对华南前汛期降水的影响及其可能机制. 热带气象学报,30(5):983-989 doi: 10.3969/j.issn.1004-4965.2014.05.019

    Li W K,He J H,Qi L,et al. 2014. The influence of the Madden-Julian oscillation on annually first rain season precipitation in South China and its possible mechanism. J Trop Meteor,30(5):983-989 (in Chinese) doi: 10.3969/j.issn.1004-4965.2014.05.019
    [10] 龙振夏,李崇银. 1999. ENSO对其后东亚季风活动影响的GCM模拟研究. 气象学报,57(6):651-661 doi: 10.11676/qxxb1999.063

    Long Z X,Li C Y. 1999. Numerical simulation of the ENSO influences on East-Asian monsoon activities afterwards. Acta Meteor Sinica,57(6):651-661 (in Chinese) doi: 10.11676/qxxb1999.063
    [11] 任宏利,吴捷,赵崇博等. 2015. MJO预报研究进展. 应用气象学报,26(6):658-668 doi: 10.11898/1001-7313.20150602

    Ren H L,Wu J,Zhao C B,et al. 2015. Progresses of MJO prediction researches and developments. J Appl Meteor Sci,26(6):658-668 (in Chinese) doi: 10.11898/1001-7313.20150602
    [12] 陶诗言,张庆云. 1998. 亚洲冬夏季风对ENSO事件的响应. 大气科学,22(4):399-407 doi: 10.3878/j.issn.1006-9895.1998.04.02

    Tao S Y,Zhang Q Y. 1998. Response of the Asian winter and summer monsoon to ENSO events. Sci Atmos Sinica,22(4):399-407 (in Chinese) doi: 10.3878/j.issn.1006-9895.1998.04.02
    [13] 王慧,丁一汇,何金海. 2005. 西北太平洋夏季风的气候学研究. 气象学报,63(4):418-430 doi: 10.3321/j.issn:0577-6619.2005.04.004

    Wang H,Ding Y H,He J H. 2005. The climate research of summer monsoon over the western North Pacific. Acta Meteor Sinica,63(4):418-430 (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.04.004
    [14] 吴捷,任宏利,赵崇博等. 2016. 国家气候中心MJO监测预测业务产品研发及应用. 应用气象学报,27(6):641-653 doi: 10.11898/1001-7313.20160601

    Wu J,Ren H L,Zhao C B,et al. 2016. Research and application of operational MJO monitoring and prediction products in Beijing Climate Center. J Appl Meteor Sci,27(6):641-653 (in Chinese) doi: 10.11898/1001-7313.20160601
    [15] 杨明珠,丁一汇,李维京等. 2007. 印度洋海表温度主模态及其与亚洲夏季季风的关系. 气象学报,65(4):527-536 doi: 10.3321/j.issn:0577-6619.2007.04.006

    Yang M Z,Ding Y H,Li W J et al. 2007. Leading mode of Indian ocean SST and its impacts on Asian summer monsoon. Acta Meteor Sinica,65(4):527-536 (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.04.006
    [16] 张庆云,陶诗言,陈烈庭. 2003. 东亚夏季风指数的年际变化与东亚大气环流. 气象学报,61(5):559-568 doi: 10.3321/j.issn:0577-6619.2003.05.005

    Zhang Q Y,Tao S Y,Chen L T. 2003. The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteor Sinica,61(5):559-568 (in Chinese) doi: 10.3321/j.issn:0577-6619.2003.05.005
    [17] Bagtasa G. 2020. Influence of Madden-Julian oscillation on the intraseasonal variability of summer and winter monsoon rainfall in the Philippines. J Climate,33(22):9581-9594 doi: 10.1175/JCLI-D-20-0305.1
    [18] Ding Y H,Liu Y Y,Hu Z Z. 2021. The record-breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv Atmos Sci,38(12):1980-1993 doi: 10.1007/s00376-021-0361-2
    [19] Donald A,Meinke H,Power B,et al. 2006. Near-global impact of the Madden-Julian oscillation on rainfall. Geophys Res Lett,33(9):L09704
    [20] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc,106(449):447-462 doi: 10.1002/qj.49710644905
    [21] Hsu P C,Li T,You L J,et al. 2015. A spatial-temporal projection model for 10-30 day rainfall forecast in South China. Climate Dyn,44(5/6):1227-1244 doi: 10.1007/s00382-014-2215-4
    [22] Hsu P C,Qian Y T,Liu Y,et al. 2020. Role of abnormally enhanced MJO over the western Pacific in the formation and subseasonal predictability of the record-breaking Northeast Asian heatwave in the summer of 2018. J Climate,33(8):3333-3349 doi: 10.1175/JCLI-D-19-0337.1
    [23] Jia X L,Chen L J,Ren F M,et al. 2011. Impacts of the MJO on winter rainfall and circulation in China. Adv Atmos Sci,28(3):521-533 doi: 10.1007/s00376-010-9118-z
    [24] Jones C,Waliser D E,Lau K M,et al. 2004. Global occurrences of extreme precipitation and the Madden-Julian oscillation:Observations and predictability. J Climate,17(23):4575-4589 doi: 10.1175/3238.1
    [25] Jones C,Carvalho L M V. 2006. Changes in the activity of the Madden-Julian oscillation during 1958-2004. J Climate,19(24):6353-6370 doi: 10.1175/JCLI3972.1
    [26] Kim K M,Lau K M. 2001. Dynamics of monsoon-induced biennial variability in ENSO. Geophys Res Lett,28(2):315-318 doi: 10.1029/2000GL012465
    [27] Lau K M,Chan P H. 1985. Aspects of the 40-50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon Wea Rev,113(11):1889-1909 doi: 10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2
    [28] Lau K M,Yang G J,Shen S H. 1988. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon Wea Rev,116(1):18-37 doi: 10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2
    [29] Liang P,Hu Z Z,Ding Y H,et al. 2021. The extreme Mei-yu season in 2020:Role of the Madden-Julian oscillation and the cooperative influence of the Pacific and Indian Oceans. Adv Atmos Sci,38(12):2040-2054 doi: 10.1007/s00376-021-1078-y
    [30] Lu W,Hsu P C. 2017. Factors controlling the seasonality of the Madden-Julian oscillation. Dyn Atmos Oceans,78:106-120 doi: 10.1016/j.dynatmoce.2017.04.002
    [31] Lü J M,Ju J H,Ren J Z,et al. 2012. The influence of the Madden-Julian oscillation activity anomalies on Yunnan's extreme drought of 2009-2010. Sci China Earth Sci,55(1):98-112 doi: 10.1007/s11430-011-4348-1
    [32] Madden R A,Julian P R. 1971. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci,28(5):702-708 doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [33] Madden R A,Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period. J Atmos Sci,29(6):1109-1123 doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [34] Mao J Y,Sun Z,Wu G X. 2010. 20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western north Pacific and South China Sea. Climate Dyn,34(5):747-761 doi: 10.1007/s00382-009-0628-2
    [35] Ren H L,Ren P F. 2017. Impact of Madden-Julian oscillation upon winter extreme rainfall in Southern China:Observations and predictability in CFSv2. Atmosphere,8(10):192
    [36] Ren P F,Ren H L,Fu J X,et al. 2018. Impact of boreal summer intraseasonal oscillation on rainfall extremes in Southeastern China and its predictability in CFSv2. J Geophys Res:Atmos,123(9):4423-4442 doi: 10.1029/2017JD028043
    [37] Stuecker M F,Jin F F,Timmermann A,et al. 2015. Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J Climate,28(3):1093-1111 doi: 10.1175/JCLI-D-14-00225.1
    [38] Waliser D E,Lau K M,Stern W,et al. 2003. Potential predictability of the Madden-Julian oscillation. Bull Amer Meteor Soc,84(1):33-50 doi: 10.1175/BAMS-84-1-33
    [39] Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?. J Climate, 13(9): 1517-1536
    [40] Wheeler M C,Hendon H H. 2004. An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction. Mon Weat Rev,132(8):1917-1932 doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [41] Xie S P,Hu K M,Hafner J,et al. 2009. Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Climate,22(3):730-747 doi: 10.1175/2008JCLI2544.1
    [42] Yamaura T,Kajikawa Y. 2017. Decadal change in the boreal summer intraseasonal oscillation. Climate Dyn,48(9-10):3003-3014 doi: 10.1007/s00382-016-3247-8
    [43] Yang H,Li C Y. 2003. The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang-Huaihe River Basin. Adv Atmos Sci,20(4):540-553 doi: 10.1007/BF02915497
    [44] Yang J L,Liu Q Y,Xie S P,et al. 2007. Impact of the Indian ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett,34(2):L02708
    [45] Yasunari T. 1979. Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J Meteor Soc Japan,57(3):227-242 doi: 10.2151/jmsj1965.57.3_227
    [46] Zhang C D. Dong M 2004. Seasonality in the Madden-Julian oscillation. J Climate,17(16):3169-3180 doi: 10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2
    [47] Zhang L N,Wang B Z,Zeng Q C. 2009. Impact of the Madden-Julian oscillation on summer rainfall in Southeast China. J Climate,22(2):201-216 doi: 10.1175/2008JCLI1959.1
    [48] Zhang W J,Jin F F,Stuecker M F,et al. 2016. Unraveling El Niño's impact on the East Asian monsoon and Yangtze river summer flooding. Geophys Res Lett,43(21):11375-11382
    [49] Zhang W J,Huang Z C,Jiang F,et al. 2021. Exceptionally persistent Madden-Julian oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys Res Lett,48(5):e2020GL091588
  • 加载中
图(11)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  57
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-06-10
  • 修回日期:  2022-03-13
  • 网络出版日期:  2022-03-15

目录

    /

    返回文章
    返回