大气中臭氧 9.6 世 带輻射收支的計算*

尹 宏 甄长忠

提 要

计算大气中的长波辐射时,吸收气体的光学厚度要作气压订正,一般取气压订正后的光学厚度 $u'=u\left(\frac{p}{p_0}\right)^K$. 对于 O_3 的 $9.6~\mu$ 带,理论分析和实验都表明 K 是 u 和 p 的函数。气压订正可取

$$u'=u\left(\frac{p}{p_0}\right)^{K(u,p)}=uf(u,p).$$

我们以 Walshaw 的实验为基础,求出 f(u, p) 的图形,并求出辐射通量及辐射通量散度的计算表。

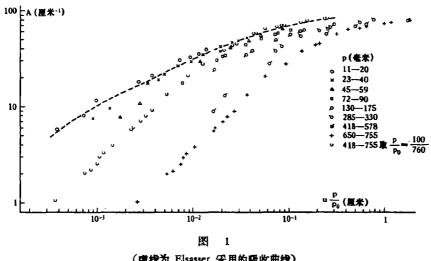
当 u 很小时,弱线近似成立。 漫射辐射的吸收率 $A_i = 1 - \exp\left(-\frac{2su}{d}\right), K \rightarrow 0$ 。 在 $u \rightarrow 0$ 时, $\frac{dA_f}{du} = \frac{2s}{d}$ 为一常量。

一、引 言

大气中臭氧 9.6 μ 带的辐射热量收支,近年来有不少人进行过计算。

Hitschfeld 等^[1]曾用电子计算机对特定的温度和臭氧垂直分布,计算过 9.6 μ 带一部 分波段 (共 3.15 厘米 $^{-1}$,不到整个 9.6 μ 带的 5%) 在 10 至 35 公里引起的变温率,然后推广到 9.6 μ 带的全部波段.

由于直接计算较繁,其他人计算辐射热量收支都先计算标准状态下 9.6 µ 带的吸收率和臭氧光学厚度的函数关系,并对不同气压条件下的臭氧含量进行适当的气压订正,订正到一个大气压。取订正后的光学厚度

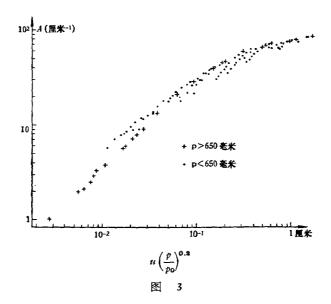

$$u' = u \left(\frac{p}{p_0}\right)^K. \tag{1}$$

Plass^[2], Ohring^[3] 及 Elsasser^[4] 对吸收和气压的关系采用线性订正,即取 K=1, Möller^[5] 根据 Walshaw^[6] 的实验结果,取 9.6 μ 带的 K=0.3,同时 他 指 出:当 u 值变 小时,K 将趋于零。 KohgpatheB^[7] 则取 K=0.2。

二、光学厚度的气压訂正

把前面所讲的气压订正方法和 Walshaw $^{[6]}$ 的实验结果相比较。 图 1 的 横坐标是 $u\frac{p}{p_0}$,纵坐标是臭氧 $9.6\,\mu$ 带的总吸收 $A=\int A_\nu d\nu$.

^{*} 本文于1964年5月31日收到,于1965年8月30日收到第二次修改稿。


(虚线为 Elsasser 采用的吸收曲线)

Elsasser[4] 指出:实验表明,在气压较大时,吸收与气压无关,因此他建议在气压大于 某个n 值时,气压订正应取 \underline{P} ,气压小于n 时仍用线性订正。 我们取 n=100 毫米, 由图 1 可以看出: 无论用 $\frac{p}{p_0}$, 或在 p > 100 毫米时改用 $\frac{100}{p_0}$, Elsasser 所采用的吸收曲线 不能代表所有的实验结果;在 $u < 10^{-2}$ 厘米时,偏差更为显著,对较大的气压,所取的A值偏高.

按照 Möller 及 Кондратьев 的方法,分別取 $u' = u \left(\frac{p}{p_0}\right)^{0.3}$ 及 $u \left(\frac{p}{p_0}\right)^{0.2}$ 为横坐标,以 A 为纵坐标作图 2 及图 3。可以看出,这两种方法和实验结果也配合得不太好。

Plass^[8] 认为,对 O₃ 的 9.6 μ 带,采用強线近似,即取 K=1的条件,大致是

 $\frac{u}{p} > 4 \times 10^{-3}$ 厘米/毫米,采用弱线近似,即取 K = 0 的条件,大致是 $\frac{u}{p} < 5 \times 10^{-4}$ 厘米/毫米. 这些条件在大气中并不是处处都成立的。因此我们取 K = 0 的函数,取订正的光学厚度为:

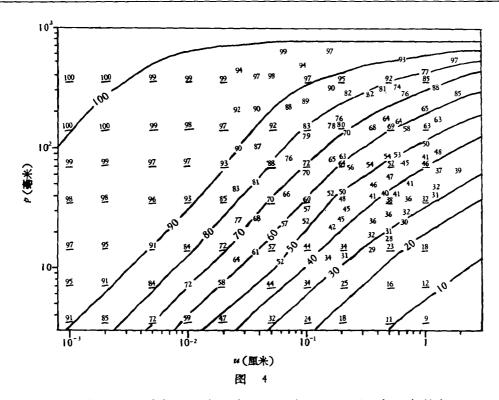
$$u'=u\left(\frac{p}{p_0}\right)^{K(u,p)}=u\ f(u,p), \tag{2}$$

在 $p = p_0$ 及 $u \to 0$ 时, f(u, p) = 1.

我们用两种方法求 f(u, p) 的数值。 第一种方法是由 Walshaw^[6] 的实验结果进行计算。 他的实验结果表明: 当 p > 650 毫米时,A 与气压无关,因此我们选用 770 > p > 650 毫米的实验结果作出在一个大气压下 A 和 u 的函数关系。 对于 p < 650 毫米的实验数据,可由实验得出的 A 值,由 p > 650 毫米的 A —u 曲线,求出订正的光学厚度 u'(A),再由 (2) 式求出

$$f(u, p) = \frac{u'(A)}{u}.$$
 (3)

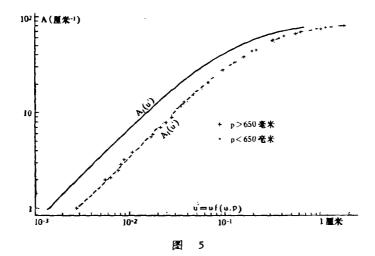
用这种方法求出的 f(u, p) 值, 在图 4 上用百分数表示。


当 p<10 毫米, $u<2\times10^{-2}$ 厘米时,Walshaw 沒有给出实验结果,我们用 Walshaw [9] 给出的 9.6 μ 带 $\frac{s}{d}$ 及 $\frac{c_0}{d}$ 随波数 ν 变化的曲线,由统计模式

$$A_{\nu}(p, u, \nu) = 1 - \exp \left[-\frac{Su}{d\sqrt{1 + \frac{Sup_0}{\pi\alpha_0 p}}} \right]. \tag{4}$$

求出不同 p, u, v 时的吸收率 A_v , 再积分求出 9.6μ 带的总吸收 A_o

$$A(u, p) = \int A_v(p, u, v) dv.$$
 (5)


由 $p = p_0 = 760$ 毫米的 $A(u, p_0)$ 曲线, 可以求出 u' 和 A 的关系, 在 $p \neq p_0$ 时, 可以

由算出的A求u'(A),再由(3)式求f(u,p)。由这种方法求出的f(u,p) 值在图 4 上用下面加横线的百分数表示。

由图 4 的 f(u, p) 等值线可以看出,f(u, p) 不但和 p 有关,而且和 u 有关,f(u, p) 是 p 的增函数,是 u 的降函数. 如果取 K 为常数, $f(u, p) = \left(\frac{p}{p_0}\right)^K$ 将只是 p 的函数.

由图 4 的等值线,查出不同 u, p 条件下的 f(u,p) 值,以 A 和 u'=u f(u,p) 为坐标, 把 Walshaw 的实验结果点在坐标纸上,结果如图 5. 把图 5 和图 1—3 比较,可以看出,气压订正采用图 4 的 f(u,p) 值,比取 K=1,0.3,0.2 等常数与实验结果更为符合.

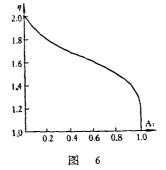
三、輻射通量和通量散度的計算

按山本义一[10]及 Godson[11] 取漫射吸收率 A₁ 为:

$$A_{i}(u') = A_{i}(\eta u'), \tag{6}$$

(6)式中 A_1 为平行光吸收率, η 和 A_1 的函数关系见图 6, 在 $A_1 \rightarrow 0$ 时, $\eta = 2$.

在图 5 上同时画出 $A_f(u')$ 曲线, 把图 5 上的 $A_f(u')$ 除以


 $\Delta \nu = 138$ 厘米⁻¹, 即得以百分率表示的吸收率:

$$A_f(u') = \frac{1}{\Delta \nu} \int [1 - \tau_f(u')] d\nu. \tag{7}$$

计算结果表明,在 $u' < 2.5 \times 10^{-4}$ 厘米时, $A_i(u')$ (以百分率表示)与u' (厘米) 成正比.

$$A_f(u') = 5.01u',$$
 (8)

$$\frac{dA_f}{du'} = 5.01. (9)$$

在 $u' > 2.5 \times 10^{-4}$ 厘米时, $A_f(u')$ 及 $\frac{dA_f}{du'}$ 与 u' 的函数关系见表 1.

表 1

log u'	$A_f(u')$	$\frac{dA_f}{du'}$	log u'	$A_{\mathbf{f}}(u')$	$\frac{dA_f}{du'}$	log u'	$A_f(u')$	$\frac{dA_{f}}{du'}$	
4 .4	0.00126	5.01	3.6	0.0196	4.84	₹.8	0.231	2.26	
4 .5	0.00158	5.00	₹.7	0.0246	4.80	2.9	0.265	1.95	
4.6	0.00199	5.00	3.8	0.0308	4.77	1.0	0.303	1.69	
4.7	0.00251	4.99	3.9	0.0386	4.73	Ī.1	0.344	1.42	
4.8	0.00316	4.99	2 .0	0.0483	4.63	1.2	0.386	1.14	
4.9	0.00397	4.98	₹.1	0.0601	4.55	Ī.3	0.428	0.840	
3.0	0.00499	4.97	2.2	0.0749	4.36	Ī.4	0.463	0.572	
3.1	0.00628	4.95	2.3	0.0922	4.18	1.5	0.494	0.383	
3.2	0.00789	4.94	2.4	0.114	3.98	Ī.6	0.522	0.275	
3.3	0.00992	4.92	₹.5	0.139	3.67	ī.7	0.545	0.200	
3.4	0.0125	4.90	2.6	0.168	3.26			}	
3.5	0.0156	4.87	2.7	0.198	2.72				

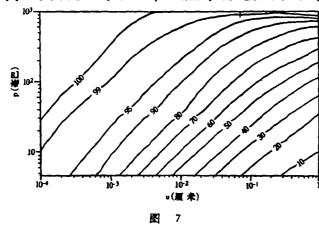
从理论上来说, u' 很小时, 弱线近似成立, 同时 $\eta \rightarrow 2$.

$$A_f(u') = A_I(2u') = 1 - e^{\frac{-2Su'}{d}} \approx \frac{2Su'}{d},$$
 (10)

$$\frac{dA_f}{du'} = \frac{2S}{d}. (11)$$

u' 趋于零时, $\frac{dA_I}{du'}$ 趋于常数 $\frac{2S}{d}$ 这个结论和有些人的结果有区别。 Brooks^[12],山本义一^[13], Elsasser^[4] 关于辐射通量散度的论文中,得出 $\frac{dA_I}{du'}$ 随 u' 的減小而不断 增大 的错误结论。错误的来源是由于他们在 u' 很小时,仍采用由強线近似推出的平方根 定律,取

 $A_i(u')$ 与 $\sqrt{u'}$ 成正比, 它使 u' 较小时 $\frac{dA_i}{du}$ 过大。


在计算辐射通量时,用的是漫射吸收率 A_i ,考虑到:

$$A_{l}(u) = \int_{0}^{1} A_{l}(u \sec \theta) d(\sin^{2} \theta) = A_{l}(\eta u), \qquad (12)$$

η 是 sec θ 的中值,所以应该把光学厚度增加 η 倍,用 η и 及 θ 求气压订正。为了查算方便,对不同的 ρ , ν 值,先求出 Δ_I , 由 Δ_I 及图 δ 求 η , 再由 θ 及 η 水出漫射辐射的气压订正。

$$\varphi(u, p) = f(\eta u, p). \tag{13}$$

 $\varphi(u, p)$ 与 u, p 的关系见图 7. 如果 $\eta = 常數$,可直接由图 4 及(13)式求 $\varphi(u, p)$.

利用 Möller^[5] 的推导,忽略 $\frac{dB_{\nu}(T)}{dT}$ 在 9.6 μ 带内的变化 (B_{ν} 为黑体辐射能力的分配函数),在 z 高度, 9.6 μ 带向上的有效辐射 F_{ν} 为:

$$F_{x} = b_{0} - b_{1}A_{f}(u'_{1} - u'_{x}, \overline{T}) - \int_{b_{1}}^{b_{2}} A_{f}(u' - u'_{x}, \overline{T})db - \int_{b_{2}}^{b_{0}} A_{f}(u'_{x} - u', \overline{T})db, \quad (14)$$

(14) 式中, b_0 , b_1 , b_1 分别为在地面,z 高度及臭氧上界温度下, 9.6μ 带范围内 (952 至 1090 厘米 $^{-1}$) 的黑体辐射通量, \bar{T} 为吸收层内的平均温度。u' 为地面至某高度的订正光学厚度。

按理论, $A_i(u', T)$ 应和温度有关,目前沒有不同温度下 9.6 μ 带的实验结果,若取

$$A_{j}(u', T) = A_{j}(u', T_{i}) \frac{A_{j}(u', T)}{A_{i}(u', T_{i})}$$
(15)

 $T_s = 20$ ℃ 为实验室温度,由 Elsasser^[4] 所给的资料,算出 $\frac{A_I(u', T)}{A_I(u', T_s)}$ 的数值如表 2.

T℃ u′(厘米)	40	20	0	-20	40	-60	-80				
10-4	0.986	1	0.988	1.020	1.064	1.070	1.080				
10-8	1.021	1	1.006	1.012	1.035	1.026	1.020				
10-1	0.990	1	0.973	0.973	0.952	0.956	0.951				

表 2 $A_f(u', T)/A_f(u', T_s)$ 与温度 T 的关系

由表 2 可以看出, $\frac{A_f(u',T)}{A_f(u',T_s)}$ 与 1 很接近;因为 Elsasser 关于吸收和温度关系的资料 尚未得到实验的证实,所以这里忽略温度对吸收的影响。 取 $A_f(u',T)/A_f(u',T_s)=1$,使计算简化。(14)式可简化成:

$$F_z = b_0 - b_1 A_f(u_1' - u_2') - \int_{b_1}^{b_2} A_f(u_1' - u_2') db - \int_{b_2}^{b_0} A_f(u_2' - u_1') db.$$
 (16)

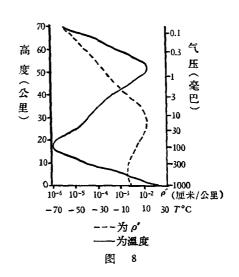
把(16)式对 uz 求微商,可得辐射散度:

$$\frac{dF_{x}}{du'_{x}} = -b_{1} \frac{dA_{f}(u'_{1} - u'_{z})}{du'_{x}} - \int_{b_{1}}^{b_{x}} \frac{dA_{f}(u' - u'_{x})}{du'_{x}} db - \int_{b_{x}}^{b_{0}} \frac{dA_{f}(u'_{z} - u')}{du'_{x}} db$$

$$= b_{1} \frac{dA_{f}(u'_{1} - u'_{z})}{d(u'_{1} - u'_{z})} + \int_{b_{1}}^{b_{x}} \frac{dA_{f}(u' - u'_{x})}{d(u' - u'_{x})} db - \int_{b_{x}}^{b_{0}} \frac{dA_{f}(u'_{z} - u')}{d(u'_{z} - u')} db. \tag{17}$$

因为du'z是一个紧靠参考高度u'z的无穷小量, 按弱线近似, 气压订正为 1, 故辐射变温率为:

$$\frac{dT}{dt} = -\frac{\rho'}{c_p \rho} \frac{dF_z}{du'}.$$
 (18)


式中ρ和ρ分别为空气及臭氧的密度。

以北纬 25°, 4 月的平均温度及 O_3 分布为例,对不同高度的有效辐射 F_z , 及辐射变温率进行计算。 温度和臭氧密度的垂直分布 取自 Ohring O_2 及 Johnson O_3 如图 8. 计算步骤如下:

(1) 把大气分成二公里一层,求出各高度的 u, 并用 Curtis-Godson^[15,16] 近似求出各高度的平 均气压

$$\tilde{p} = \frac{\sum p \Delta u}{\sum \Delta u}.$$

(2) 由各高度的 \bar{p} , u 及图 7 求出气压订正 $\varphi(u,\bar{p})$

(3) 由 $u' = u\varphi(u, \bar{p})$ 查算各高度的 $A_f(u')$ 及 $\frac{dA_f(u')}{du'}$, 代入(16), (17)式, 求各高

表 3 9.6 μ 带各高度 F_x 和 dT/dt 的计算结果

高度(公里)	有3	数辐射 Fz	(卡/厘 米*・	日)	福射变溫率(度/日)					
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)		
16	67.94	63.37	68.55	68.25	0.26	0.20	0.137	0.145		
22	62.81	60.77	64.03	63.75	0.87	0.22	0.380	0.432		
28	60.08	59.15	60.91	60.15	0.79	-0.10	0.327	0.452		
34	59.55	59.79	59.95	59.15	-1.78	-0.61	-0.473	-0.441		
40	59.92		60.44	60.28	-2.99		-0.655	-1.00		
46	60.71			1	-5.15			}		
52	61.21				-3.18			1		
58	61.335			ł	-0.90	}		 		
64	61.3434				-0.11]		
70	61.3435			}	+0.10		ļ			

度的 F_* 及 $\frac{dF_*}{du'_*}$, 再由(18)式求变温率 $\frac{dT}{dt}$.

为了比较,用 Elsasser 所给的大气辐射表,及用 $\left(\frac{p}{p_0}\right)^{0.2}$, $\left(\frac{p}{p_0}\right)^{0.3}$ 为气压订正,对同样的资料进行计算,结果列在表 3.

表 3 中(1)项为我们计算的结果,(2),(3),(4)项分别为用 Elsasser 辐射表, $\left(\frac{p}{p_0}\right)^{0.3}$ 及 $\left(\frac{p}{p_0}\right)^{0.2}$ 订正计算的结果。 用其他方法只能算到 40 公里以下,因为由实验数据只能求出 $u'>10^{-4}$ 厘米的 $A_f(u')$ 及 $\frac{dA_f}{du'}$ 值。 在 40 公里以上,u' 常小于 10^{-4} 厘米,无法查出相应 的 $A_f(u')$ 及 $\frac{dA_f(u')}{du'}$ 值。

附录:	9.6 μ 带黑体辐射能力 ь 与温度 T℃ 的关系
	[b(T) 的单位为 10-5 卡/厘米*·分]

T	ь	T	ь	T	ь	T	ь	T	ь	Т	ь
50	8444	20	5287	-4	3381	-28	1984	-52	1037	-76	465
45	7856	18	5108	-6	3246	- 30	1888	-54	976	-78	431
40	7301	16	4933	-8	3115	- 32	1795	-56	917	-80	399
38	7077	14	4762	10	2986	- 34	1704	58	860	-82	368
36	6860	12	4594	-12	2861	- 36	1617	60	806	-84	338
34	6649	10	4429	-14	2740	- 38	1534	-62	755	-86	310
32	6444	8	4268	-16	2621	40	1455	-64	707	-88	285
30	6243	6	4111	-18	2506	- 42	1379	-66	662	-90	263
28	6046	4	3958	-20	2395	-44	1306	-68	619	-100	167
26	5851	2	3809	-22	2287	46	1235	-70	577	-110	98
24	5658	0	3663	-24	2184	 4 8	1166	-72	537	-120	55
22	5471	-2	3520	-26	2083	50	1100	-74	500		

参 考 文 献

- [1] Hitschfeld, W., Houghton, J. T., Q. J.R. Met. Soc., 87 (1961), 562-577.
- [2] Plass, G. N., Q. J. Met. Soc., 82 (1956), 30-45.
- [3] Ohring, G., J. Met., 15 (1958), 440-451.
- [4] Elsasser, W. M., Met. Monograph, 4 (1960), No. 23.
- [5] Manabe, S., Möller, F., Monthly Weather Review, 89 (1961), 503-532.
- [6] Walshaw, C. D., Q. J. R. Met. Soc., 83 (1957), 315-321.
- [7] Kondratiev, K. Y., Nilisk H. J., Geofisica Pura e Applicata, 49 (1961), 197-207.
- [8] Plass, G. N., J. Opt. Soc. Amer., 50 (1960), 868-875.
- [9] Walshaw, C. D., Goody, R. M., Proceedings of the Toronto Met. Conference, 1953, 49-52.
- [10] 山本义一, Sci. Rep. Tohoko Uni. Series, 5 (1951), 3, 130—133.
- [11] Godson, W. L., Proceedings of the Toronto Met. Conference (1953), 35-42.
- [12] Brooks, D. L., J. Met., 7 (1950), 313-321.
- [13] 山本义一, Sci. Rep. Tohoko Uni. Series, 5 (1953), 4, 108-118.
- [14] Johnson, F. S., J. Geophy. Res., 57 (1952), 158-176.
- [15] Curtis, A. R., Q. J. R. Met. Soc., 78 (1952), 638-640.
- [16] Godson, W. L., Q. J. R. Met. Soc., 79 (1953), 367-379.

RADIATIVE HEAT TRANSFER DUE TO THE 9.6 MICRON BAND OF OZONE

YIN HONG AND ZHEN CHANG-ZHONG
(Peking University)

ABSTRACT

For 9.6 μ band of ozone, theory and experimental results show that the pressure-correction $(p/p_0)^K$ for optical length u of absorbing gas is a function of p and u. The pressure-correction $f(u, p) = (p/p_0)^K$ is determined from experimental results. The mean slab absorptivity $A_f(u')$ and $dA_f(u')/du'$ of this band is computed.

When u is small, weak line approximation is valid, $A_f(u') = 1 - \exp(-2s/d)$, f(u, p) = 1. The pressure-correction for du' in calculating radiative divergence dF_x/du' should be unity, and $dA_f(u')/du'$ approaches a constant value 2s/d.