Citation: | Zhang Kesu. 1988: ON MESOSCALE INSTABILITY OF A BAROCLINIC FLOW 1. Symmetric Instability. Acta Meteorologica Sinica, (3): 258-266. DOI: 10.11676/qxxb1988.033 |
Kuo, H. L., Symmetric disturances in a thin layer of fluid subject to a horizontal temperature gradient and rotation, J. Meteor., Ⅱ, 399-411,1954.
|
Ogura, Y., and Y. L. Chen, A life history of an intense mesoscale convective storm in Oklahoma, J. Atmos. Sci., 33, 1458-1476,1977.
|
Ooyama, K., On the stability of baroclinic circular vortex: a sufficient criterion for instability,J.Atmos. Sci., 23, 43-53,1966.
|
Hoskins, B. J., The role of potential vorticity in symmetric stability and instability, Quart. J.Roy. Met. Soc., 100, 480-482, 1974.
|
Bennetts, D. A., and B. J. Hoskins, Conditional symmetric instability-a possible explanation for frontal rainbands, Quart. J. Roy. Mel. Soc., I05, 945-962,1979.
|
Emanuel, K. A., Inertial instability and mesoscale convective systems. Part Ⅰ: Linear theory ofinertial instability in rotating viscous fluids, J. Atmos. Sci., 36,2425-2449, 1979.
|
Ogura, Y., Han-Ming Juang, Ke-Su Zhang and Su-Tzai Soong, Possible triggering mechanisms for severe storms in SESAMEAVE IV (9-10 May 1979), Bull. Amer. Me6. Soc., 63, 503-515,1982.
|
Kuo, H. L., and K. L. Seitter, Instability of shearing geostrophic currents in neutral and partly unstable atmospheres, J. Atmos. Sci., 92, 331-345, 1985.
|
张可苏,大气动力学模式的比较研究,中国科学,1980,3, 277-270.
|