TAN Chao, LIU Qijun, MA Zhanshan. 2013: Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteorologica Sinica, (5): 867-878. DOI: 10.11676/qxxb2013.067
Citation: TAN Chao, LIU Qijun, MA Zhanshan. 2013: Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteorologica Sinica, (5): 867-878. DOI: 10.11676/qxxb2013.067

Influences of sub-grid convective processes on cloud forecast in the GRAPES global model

More Information
  • Received Date: December 09, 2012
  • Revised Date: May 01, 2013
  • Published Date: May 06, 2013
  • The purpose of the research is to improve the prediction of the hydrometeors water content, cloud fraction and grid precipitation by the Global/Regional Assimilation and Prediction System (GRAPES) global model at 50 km spatial resolution for the low latitudes and equatorial regions. This study adopts a new scheme that considers the impact of this sub-grid convective process by adding source-sink terms in the prediction equations of cloud water/ice and cloud fraction. Distinct forecast results from the previous cloud scheme are obtained. The forecasts of cloud and precipitation in the low latitudes and equatorial regions have been significantly improved after consideration of the effect of the sub-grid convective process. Moreover, compared with the observational data from the Clouds and the Earth's Radiant Energy System (CERES) and Tropical Rainfall Measuring Mission (TRMM), it is confirmed that the forecasting capability of the GRAPES global model has been promoted especially for the cloud and precipitation in the tropics, with the proportion of grid-scale precipitation enhances from 5% to 25%. Further analysis reveals that the influence of the sub-scale convective process on gird-scale cloud and precipitation depends on the distribution and intensity of updraft mass flux, which are larger from the new scheme in the tropics, leading to notable increases of cloud and precipitation there. In addition, the maximum updraft mass flux resides in the 450-650 hPa layer, resulting in more pronounced improvement in forecast of middle-level clouds than high clouds and low-level clouds, and causes cloud top to rise with cloud bottom dropping downward.
  • 陈小敏, 刘奇俊, 章建成. 2007. 祁连山云系云微物理结构和人工增雨催化个例模拟研究. 气象, 33(7): 33-43
    戴福山, 宇如聪, 张学洪等. 2004. 一个统计低云方案及其在大气环流模式中应用初探. 气象学报, 62(4): 385-394
    胡志晋, 严采繁. 1986. 层状云微物理过程的数值模拟: (一)微物理模式. 中国气象科学研究院院刊, 1(1): 37-52
    刘奇俊, 胡志晋, 周秀骥. 2003. HLAFS显式云降水方案及其对暴雨和云的模拟(I): 云降水显式方案. 应用气象学报, 14(增刊): 60-67
    刘奇俊, 胡志晋. 2001. 中尺度模式湿物理过程和物理初始化方法. 气象科技, 29(2): 1-10
    章建成, 刘奇俊. 2006. GRAPES模式不同云物理方案对短期气候模拟的影响. 气象, 32(7): 3-12
    Arakawa A, Schubert W H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J Atmos Sci, 31(3): 674-701
    Arakawa A. 2004. The cumulus parameterization problem: Past, present, and future. J Climate, 17(13): 2493-2525
    Charmaine F, Christian J, Martin D, et al. 2011. Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP-ICE. Quart J Roy Meteor Soc, 138(664): 734-754
    Gettelman A, Morrison H, Ghan S J. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J Climate, 21(15): 3660-3679
    Grell G A. 1993. Prognostic evaluation of assumptions used by cumulus parameterization. Mon Wea Rev, 121(3): 764-787
    Morrison H, Gettelman A. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J Climate, 21(15): 3642-3659
    Sundqvist H. 1978. A Parameterization scheme for non-convective condensation including prediction of cloud water content. Quart J Roy Meteor Soc, 104(441): 677-690
    Sundqvist H, Berge E, Kristjánsson J E. 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Wea Rev, 117(8): 1641-1657
    Tiedtke M. 1993. Representation of clouds in large-scale models. Mon Wea Rev, 121(11): 3040-3061
    Wilson D R, Bushell A C, Kerr-Munslow A M, et al. 2008. PC2: A prognostic cloud fraction and condensation scheme. Part I: Scheme description. Quart J Roy Meteor Soc, 134(637): 2093-2107
    Xu K M, Randall D A. 1996. A semiempirical cloudiness parameterization for use in Climate Models. J Atmos Sci, 53(21): 3084-3102

Catalog

    Article views (3080) PDF downloads (1927) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return