Citation: | WAN Ziwei, WANG Jianjie, HUANG Liping, KANG Jiaqi. 2015: An improvement of the shallow convection parameterization scheme in the GRAPES-Meso. Acta Meteorologica Sinica, (6): 1066-1079. DOI: 10.11676/qxxb2015.071 |
陈德辉. 1997. 积云对流参数化技术. 应用气象学报, 8(Sup): 69-77. Chen D H. 1997. A review on the cumulus convective parameterization. J App Meteor Sci, 8(S): 69-77 (in Chinese)
|
陈静, 薛纪善, 颜宏. 2003. 物理过程参数化方案对中尺度暴雨数值预报模拟影响的研究. 气象学报, 61(2): 203-218. Chen J, Xue J S, Yan H. 2003. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation. Acta Meteor Sinica, 61(2): 203-218 (in Chinese)
|
邓华, 薛纪善, 徐海明等. 2008. GRAPES中尺度模式中不同对流参数化方案模拟对流激发的研究. 热带气象学报, 24(4): 327-334. Deng H, Xue J S, Xu H M, et al. 2008. Study of different cumulus parameterization schemes of GRAPES-MESO model in simulation of convection provocation. J Trop Meteor, 24(4): 327-334 (in Chinese)
|
丁一汇, 柳艳菊. 2006. 南海夏季风爆发的数值模拟. 应用气象学报, 17(5): 526-537. Ding Y H, Liu Y J. 2006. Simulation of the South China Sea summer monsoon onset. J App Meteor Sci, 17(5): 526-537 (in Chinese)
|
廖镜彪, 王雪梅, 夏北成等. 2012. WRF模式中微物理和积云参数化方案的对比试验. 热带气象学报, 28(4): 461-470. Liao J B, Wang X M, Xia B C, et al. 2012. The effects of different physics and cumulus parameterization schemes in WRF on heavy rainfall simulation in PRD. J Trop Meteor, 28(4): 461-470 (in Chinese)
|
陆汉城, 康建伟, 王力维等. 2002. 非均匀粘性基流中带状浅对流单体的发展. 南京大学学报(自然科学), 38(3): 346-353. Lu H C, Kang J W, Wang L W, et al. 2002. The development of the shallow band convection cell in nonuniform viscous basic flow. J Nanjing Univ (Nat Sci), 38(3): 346-353 (in Chinese)
|
刘一鸣, 丁一汇. 2001. 修正的质量通量积云对流方案及其模拟试验研究Ⅰ: 方案介绍及对1991年洪涝过程的模拟. 气象学报, 59(1): 10-22. Liu Y M, Ding Y H. 2001. Modified mass flux cumulus parameterization scheme and its simulation experiment. part Ⅰ: Mass flux scheme and it simulation of the flooding in 1991. Acta Meteor Sinica, 59(1): 10-22 (in Chinese)
|
刘屹岷, 刘琨, 吴国雄. 2007. 积云对流参数化方案对大气含水量及降水的影响. 大气科学, 31(6): 1201-1211. Liu Y M, Liu K, Wu G X. 2007. The impacts of cumulus convective parameterization on the atmospheric water-content and rainfall simulation in SAMIL. J Atmos Sci, 31(6): 1201-1211 (in Chinese)
|
屠妮妮, 何光碧, 张利红. 2011. WRF模式中不同积云对流参数化方案对比试验. 高原山地气象研究, 31(2): 18-25. Tu N N, He G B, Zhang L H. 2011. Simulation test on the effects of various cumulus parameterization schemes in WRF model. Plat Mount Meteor Res, 31(2): 18-25 (in Chinese)
|
王德立, 徐国强, 贾丽红. 2013. GRAPES的积云对流参数化方案性能评估及其改进试验. 气象, 39(2): 166-179. Wang D L, Xu G Q, Jia L H. 2013. The evaluation of cumulus parameterization schemes in GRAPES model and its improved experiments. Meteor Mon, 39(2): 166-179 (in Chinese)
|
王建捷, 胡欣, 郭肖容. 2001. MM5模式中不同对流参数化方案的比较试验. 应用气象学报, 12(1): 41-53. Wang J J, Hu X, Guo X R. 2001. Comparison experiments on cumulus parameterization schemes of the MM5. Quart J App Meteor, 12(1): 41-53 (in Chinese)
|
王建捷, 周斌, 郭肖容. 2005. 不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响. 气象学报, 63(4): 405-417. Wang J J, Zhou B, Guo X R. 2005. Numerical study on characteristics of condensational heating rates and their impacts on mesoscale structures of torrential rain simulations. Acta Meteor Sinica, 63(4): 405-417 (in Chinese)
|
徐道生, 陈子通, 钟水新等. 2014. 对流参数化与微物理过程的耦合及其对台风预报的影响研究. 气象学报, 72(2): 337-349. Xu D S, Chen Z T, Zhong S X, et al. 2014. Study of the coupling of cumulus convection parameterization with cloud microphysics and its influence on forecast of typhoon. Acta Meteor Sinica, 72(2): 337-349 (in Chinese)
|
薛纪善, 陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 383pp. Xue J S, Chen D H. 2008. Scientific Design and Application of GRAPES. Beijing: Science Press, 383pp (in Chinese)
|
杨军丽, 沈学顺. 2012. GRAPES单柱模式的试验研究. 气象学报, 70(2): 275-290. Yang J L, Shen X S. 2012. A case study of the GRAPES single column model. Acta Meteor Sinica, 70(2): 275-290 (in Chinese)
|
Berg L K, Stull R B. 2004. Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J Atmos Sci, 61(7): 813-828
|
Berg L K, Stull R B. 2005. A simple parameterization coupling the convective daytime boundary layer and fair-weather cumuli. J Atmos Sci, 62(6): 1976-1988
|
Berg L K, Kassianov E I, Long C N, et al. 2011. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site. J Geophys Res, 116(D1): D01202, doi: 10.1029/2010JD014593
|
Berg L K, Gustafson W I, Kassianov E I, et al. 2013. Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon Wea Rev, 141(1): 134-147
|
Betts A K. 1986. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart J Roy Meteor Soc, 112(473): 677-691
|
Bretherton C S, McCaa J R, Grenier H. 2004. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. PartⅠ: Description and 1D results. Mon Wea Rev, 132(4): 864-882
|
Brown A R, Cederwall R T, Chlond A, et al. 2002. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart J Roy Meteor Soc, 128(582): 1075-1093
|
Dorrestijn J, Crommelin D T, Siebesma A P, et al. 2012. Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor Comp Fluid Dyn, 27(1-2): 133-148
|
Fritsch J M, Chappell C F. 1980. Numerical prediction of convectively driven Mesoscale pressure systems. PartⅠ: Convective parameterization. J Atmos Sci, 37(8): 1722-1733
|
Hannay C, Williamson D L, Hack J J, et al. 2009. Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J Climate, 22(11): 2871-2889
|
Johnson R H, Rickenbach T M, Rutledge S A, et al. 1999. Trimodal characteristics of tropical convection. J Climate, 12(8): 2397-2418
|
Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 47(23): 2784-2802
|
Kain J S, Fritsch J M. 1993. Convective parameterization for Mesoscale models: The Kain-Fritsch scheme//Emanuel K A, Raymond D J. The Representation of Cumulus Convection in Numerical Models. New York: Ameri Meteor Soc, 165-170
|
Kain J S. 2004. The Kain-Fritsch convective parameterization: An update. J Appl Meteor, 43(1): 170-181
|
Nie J, Kuang Z M. 2012. Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J Atmos Sci, 69(6): 1936-1956
|
Rio C, Hourdin F, Couvreux F, et al. 2010. Resolved versus parametrized boundary-layer plumes. Part II: continuous formulations of mixing rates for mass-flux schemes. Bound Layer Meteor, 135(3): 469-483
|
Siebesma A P, Jakob C, Lenderink G, et al. 2004. Cloud representation in general-circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Quart J Roy Meteor Soc, 130(604): 3245-3267
|
Soares P M M, Miranda P M A, Siebesma A P, et al. 2004. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quart J Roy Meteor Soc, 130(604): 3365-3383
|
Stevens B, Ackerman A S, Albrecht B A, et al. 2001. Simulations of trade wind cumuli under a strong inversion. J Atmos Sci, 58(14): 1870-1891
|
Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Boston: Kluwer Academic Publishers
|
Tiedtke M, Heckley W A, Slingo J. 1988. Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart J Roy Meteor Soc, 114(481): 639-644
|
Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev, 117(8): 1779-1800
|