WAN Ziwei, WANG Jianjie, HUANG Liping, KANG Jiaqi. 2015: An improvement of the shallow convection parameterization scheme in the GRAPES-Meso. Acta Meteorologica Sinica, (6): 1066-1079. DOI: 10.11676/qxxb2015.071
Citation: WAN Ziwei, WANG Jianjie, HUANG Liping, KANG Jiaqi. 2015: An improvement of the shallow convection parameterization scheme in the GRAPES-Meso. Acta Meteorologica Sinica, (6): 1066-1079. DOI: 10.11676/qxxb2015.071

An improvement of the shallow convection parameterization scheme in the GRAPES-Meso

More Information
  • Received Date: February 14, 2015
  • Revised Date: June 06, 2015
  • Published Date: January 05, 2016
  • An improvement on the trigger function of the shallow convection scheme in the GRAPES-Meso has been designed and tested referring the treatment suggested by Berg, et al (2005, 2013), in which the trigger function is related to the distribution of temperature and humidity in the convective surface layer determined by the Joint Probability Density Functions (JPDF). The results show that more shallow convection could be triggered and occur in an earlier simulation time than the original one, and the stronger feedbacks of temperature, moisture and water vapor condensate of cloud to model grid scale are correspondingly identified in the lower layers from several hundred meters to about 2-3 km above the ground; with an improvement in the shallow convection, there is a positive impact on the fraction of subgrid/grid scale precipitation to the total precipitation of GRAPES-Meso. The verification for the forecast results of 2-month experiment indicates that the improvement of the trigger function of shallow convection scheme could result in the better performances of 24 h forecasts of accumulative precipitation and surface air temperature.
  • 陈德辉. 1997. 积云对流参数化技术. 应用气象学报, 8(Sup): 69-77. Chen D H. 1997. A review on the cumulus convective parameterization. J App Meteor Sci, 8(S): 69-77 (in Chinese)
    陈静, 薛纪善, 颜宏. 2003. 物理过程参数化方案对中尺度暴雨数值预报模拟影响的研究. 气象学报, 61(2): 203-218. Chen J, Xue J S, Yan H. 2003. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation. Acta Meteor Sinica, 61(2): 203-218 (in Chinese)
    邓华, 薛纪善, 徐海明等. 2008. GRAPES中尺度模式中不同对流参数化方案模拟对流激发的研究. 热带气象学报, 24(4): 327-334. Deng H, Xue J S, Xu H M, et al. 2008. Study of different cumulus parameterization schemes of GRAPES-MESO model in simulation of convection provocation. J Trop Meteor, 24(4): 327-334 (in Chinese)
    丁一汇, 柳艳菊. 2006. 南海夏季风爆发的数值模拟. 应用气象学报, 17(5): 526-537. Ding Y H, Liu Y J. 2006. Simulation of the South China Sea summer monsoon onset. J App Meteor Sci, 17(5): 526-537 (in Chinese)
    廖镜彪, 王雪梅, 夏北成等. 2012. WRF模式中微物理和积云参数化方案的对比试验. 热带气象学报, 28(4): 461-470. Liao J B, Wang X M, Xia B C, et al. 2012. The effects of different physics and cumulus parameterization schemes in WRF on heavy rainfall simulation in PRD. J Trop Meteor, 28(4): 461-470 (in Chinese)
    陆汉城, 康建伟, 王力维等. 2002. 非均匀粘性基流中带状浅对流单体的发展. 南京大学学报(自然科学), 38(3): 346-353. Lu H C, Kang J W, Wang L W, et al. 2002. The development of the shallow band convection cell in nonuniform viscous basic flow. J Nanjing Univ (Nat Sci), 38(3): 346-353 (in Chinese)
    刘一鸣, 丁一汇. 2001. 修正的质量通量积云对流方案及其模拟试验研究Ⅰ: 方案介绍及对1991年洪涝过程的模拟. 气象学报, 59(1): 10-22. Liu Y M, Ding Y H. 2001. Modified mass flux cumulus parameterization scheme and its simulation experiment. part Ⅰ: Mass flux scheme and it simulation of the flooding in 1991. Acta Meteor Sinica, 59(1): 10-22 (in Chinese)
    刘屹岷, 刘琨, 吴国雄. 2007. 积云对流参数化方案对大气含水量及降水的影响. 大气科学, 31(6): 1201-1211. Liu Y M, Liu K, Wu G X. 2007. The impacts of cumulus convective parameterization on the atmospheric water-content and rainfall simulation in SAMIL. J Atmos Sci, 31(6): 1201-1211 (in Chinese)
    屠妮妮, 何光碧, 张利红. 2011. WRF模式中不同积云对流参数化方案对比试验. 高原山地气象研究, 31(2): 18-25. Tu N N, He G B, Zhang L H. 2011. Simulation test on the effects of various cumulus parameterization schemes in WRF model. Plat Mount Meteor Res, 31(2): 18-25 (in Chinese)
    王德立, 徐国强, 贾丽红. 2013. GRAPES的积云对流参数化方案性能评估及其改进试验. 气象, 39(2): 166-179. Wang D L, Xu G Q, Jia L H. 2013. The evaluation of cumulus parameterization schemes in GRAPES model and its improved experiments. Meteor Mon, 39(2): 166-179 (in Chinese)
    王建捷, 胡欣, 郭肖容. 2001. MM5模式中不同对流参数化方案的比较试验. 应用气象学报, 12(1): 41-53. Wang J J, Hu X, Guo X R. 2001. Comparison experiments on cumulus parameterization schemes of the MM5. Quart J App Meteor, 12(1): 41-53 (in Chinese)
    王建捷, 周斌, 郭肖容. 2005. 不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响. 气象学报, 63(4): 405-417. Wang J J, Zhou B, Guo X R. 2005. Numerical study on characteristics of condensational heating rates and their impacts on mesoscale structures of torrential rain simulations. Acta Meteor Sinica, 63(4): 405-417 (in Chinese)
    徐道生, 陈子通, 钟水新等. 2014. 对流参数化与微物理过程的耦合及其对台风预报的影响研究. 气象学报, 72(2): 337-349. Xu D S, Chen Z T, Zhong S X, et al. 2014. Study of the coupling of cumulus convection parameterization with cloud microphysics and its influence on forecast of typhoon. Acta Meteor Sinica, 72(2): 337-349 (in Chinese)
    薛纪善, 陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 383pp. Xue J S, Chen D H. 2008. Scientific Design and Application of GRAPES. Beijing: Science Press, 383pp (in Chinese)
    杨军丽, 沈学顺. 2012. GRAPES单柱模式的试验研究. 气象学报, 70(2): 275-290. Yang J L, Shen X S. 2012. A case study of the GRAPES single column model. Acta Meteor Sinica, 70(2): 275-290 (in Chinese)
    Berg L K, Stull R B. 2004. Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J Atmos Sci, 61(7): 813-828
    Berg L K, Stull R B. 2005. A simple parameterization coupling the convective daytime boundary layer and fair-weather cumuli. J Atmos Sci, 62(6): 1976-1988
    Berg L K, Kassianov E I, Long C N, et al. 2011. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site. J Geophys Res, 116(D1): D01202, doi: 10.1029/2010JD014593
    Berg L K, Gustafson W I, Kassianov E I, et al. 2013. Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon Wea Rev, 141(1): 134-147
    Betts A K. 1986. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart J Roy Meteor Soc, 112(473): 677-691
    Bretherton C S, McCaa J R, Grenier H. 2004. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. PartⅠ: Description and 1D results. Mon Wea Rev, 132(4): 864-882
    Brown A R, Cederwall R T, Chlond A, et al. 2002. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart J Roy Meteor Soc, 128(582): 1075-1093
    Dorrestijn J, Crommelin D T, Siebesma A P, et al. 2012. Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor Comp Fluid Dyn, 27(1-2): 133-148
    Fritsch J M, Chappell C F. 1980. Numerical prediction of convectively driven Mesoscale pressure systems. PartⅠ: Convective parameterization. J Atmos Sci, 37(8): 1722-1733
    Hannay C, Williamson D L, Hack J J, et al. 2009. Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J Climate, 22(11): 2871-2889
    Johnson R H, Rickenbach T M, Rutledge S A, et al. 1999. Trimodal characteristics of tropical convection. J Climate, 12(8): 2397-2418
    Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 47(23): 2784-2802
    Kain J S, Fritsch J M. 1993. Convective parameterization for Mesoscale models: The Kain-Fritsch scheme//Emanuel K A, Raymond D J. The Representation of Cumulus Convection in Numerical Models. New York: Ameri Meteor Soc, 165-170
    Kain J S. 2004. The Kain-Fritsch convective parameterization: An update. J Appl Meteor, 43(1): 170-181
    Nie J, Kuang Z M. 2012. Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J Atmos Sci, 69(6): 1936-1956
    Rio C, Hourdin F, Couvreux F, et al. 2010. Resolved versus parametrized boundary-layer plumes. Part II: continuous formulations of mixing rates for mass-flux schemes. Bound Layer Meteor, 135(3): 469-483
    Siebesma A P, Jakob C, Lenderink G, et al. 2004. Cloud representation in general-circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Quart J Roy Meteor Soc, 130(604): 3245-3267
    Soares P M M, Miranda P M A, Siebesma A P, et al. 2004. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quart J Roy Meteor Soc, 130(604): 3365-3383
    Stevens B, Ackerman A S, Albrecht B A, et al. 2001. Simulations of trade wind cumuli under a strong inversion. J Atmos Sci, 58(14): 1870-1891
    Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Boston: Kluwer Academic Publishers
    Tiedtke M, Heckley W A, Slingo J. 1988. Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart J Roy Meteor Soc, 114(481): 639-644
    Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev, 117(8): 1779-1800

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return