Song Jiakun, Chen Yaodeng, Chen Dan. 2021. A study of meteorology-aerosol joint data assimilation on autumn PM2.5 concentration simulation. Acta Meteorologica Sinica, 79(3):477-491. DOI: 10.11676/qxxb2021.026
Citation: Song Jiakun, Chen Yaodeng, Chen Dan. 2021. A study of meteorology-aerosol joint data assimilation on autumn PM2.5 concentration simulation. Acta Meteorologica Sinica, 79(3):477-491. DOI: 10.11676/qxxb2021.026

A study of meteorology-aerosol joint data assimilation on autumn PM2.5 concentration simulation

More Information
  • Received Date: October 15, 2020
  • Revised Date: February 25, 2021
  • Available Online: August 06, 2021
  • Published Date: June 19, 2021
  • Compared with the pollution accumulation process under stable condition in winter, the autumn meteorological conditions are more complex and local. The uncertainty of the meteorological condition simulation brings greater difficulty to the autumn aerosol simulation, and the online meteorology-aerosol joint assimilation are rarely considered in current model simulations. The WRF/Chem model and GSI three-dimensional variational data assimilation system were used to carry out 4 groups of simulation and assimilation experiments (in 6 h cycle frequency) for October 2015, and the influences of meteorology-aerosol joint data assimilation on autumn aerosol simulation were discussed. Results show that the WRF/Chem could simulate the regional air pollution events in autumn in China, but there existed overestimates/underestimates in the Middle East/Northwest China. Assimilation of PM2.5 observations improved the simulation results, and the 6 h forecast deviation was reduced to less than 6 μg/m3. For the North China Plain, PM2.5 pollution in autumn was closely related to special meteorological conditions, e.g. high humidity, convergence of wind field, and regional transport. Therefore, the assimilation of conventional meteorological data in addition to surface PM2.5 assimilation better captured the meteorology-pollution process and the correlation coefficient of PM2.5 concentration forecast was increased from 0.86 to 0.89. Joint meteorology-aerosol data assimilation can help to more accurately simulate autumn aerosol pollution process in China, and thus can better serve scientific researches on pollution mechanism and meteorology-aerosol interaction under the framework of meteorological forecast.
  • 陈耀登,王元兵,闵锦忠等. 2014. 一种控制变量循环扰动和多参数化方案的混合同化方法. 大气科学学报,37(6):732-739

    Chen Y D,Wang Y B,Min J Z,et al. 2014. A hybrid assimilation method with control variable cycle perturbation and multi-physical parameterization. Trans Atmos Sci,37(6):732-739 (in Chinese)
    蒋伊蓉,朱蓉,朱克云等. 2015. 京津冀地区重污染天气过程的污染气象条件数值模拟研究. 环境科学学报,35(9):2681-2692

    Jiang Y R,Zhu R,Zhu K Y,et al. 2015. Numerical simulation on the air pollution potential in the severe air pollution episodes in Beijing-Tianjin-Hebei Region. Acta Sci Circumst,35(9):2681-2692 (in Chinese)
    靳璐滨,臧增亮,潘晓滨等. 2016. PM2.5和PM2.5~10资料同化及在南京青奥会期间的应用试验. 中国环境科学,36(2):331-341 DOI: 10.3969/j.issn.1000-6923.2016.02.003

    Jin L B,Zang Z L,Pan X B,et al. 2016. Data assimilation and application experiments of PM2.5 and PM2.5~10 during Nanjing Youth Olympic Games. China Environ Sci,36(2):331-341 (in Chinese) DOI: 10.3969/j.issn.1000-6923.2016.02.003
    刘琳,王玲玲,白永清等. 2017. 应用WRF/Chem模拟河南冬季大气颗粒物的区域输送特征. 环境科学学报,37(5):1843-1854

    Liu L,Wang L L,Bai Y Q,et al. 2017. Simulation for the impacts of regional transport on winter particulate matter levels over Henan based on WRF/Chem model. Acta Sci Circumst,37(5):1843-1854 (in Chinese)
    庞杨,韩志伟,朱彬等. 2013. 利用WRF-Chem模拟研究京津冀地区夏季大气污染物的分布和演变. 大气科学学报,36(6):674-682 DOI: 10.3969/j.issn.1674-7097.2013.06.004

    Pang Y,Han Z W,Zhu B,et al. 2013. A model study on distribution and evolution of atmospheric pollutants over Beijing-Tianjin-Hebei region in summertime with WRF-Chem. Trans Atmos Sci,36(6):674-682 (in Chinese) DOI: 10.3969/j.issn.1674-7097.2013.06.004
    王跃思, 姚利, 王莉莉等. 2014. 2013年元月我国中东部地区强霾污染成因分析. 中国科学: 地球科学, 44(1): 15-26.

    Wang Y S, Yao L, Wang L L, et al. 2014. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci China Earth Sci, 57(1): 14-25
    王自发, 李杰, 王哲等. 2014. 2013年1月我国中东部强霾污染的数值模拟和防控对策. 中国科学: 地球科学, 44(1): 3-14.

    Wang Z F, Li J, Wang Z, et al. 2014. Modeling study of regional severe hazes over Mid-Eastern China in January 2013 and its implications on pollution prevention and control. Sci China Earth Sci, 57(1): 3-13
    熊春晖,张立凤,关吉平等. 2013. 集合-变分数据同化方法的发展与应用. 地球科学进展,28(6):648-656 DOI: 10.11867/j.issn.1001-8166.2013.06.0648

    Xiong C H,Zhang L F,Guan J P,et al. 2013. Development and application of ensemble-variational data assimilation methods. Adv Earth Sci,28(6):648-656 (in Chinese) DOI: 10.11867/j.issn.1001-8166.2013.06.0648
    薛纪善. 2009. 气象卫星资料同化的科学问题与前景. 气象学报,67(6):903-911

    Xue J S. 2009. Scientific issues and perspective of assimilation of meteorological satellite data. Acta Meteor Sinica,67(6):903-911 (in Chinese)
    张美根. 2005. 多尺度空气质量模式系统及其验证Ⅰ: 模式系统介绍与气象要素模拟. 大气科学,29(5):805-813 DOI: 10.3878/j.issn.1006-9895.2005.05.13

    Zhang M G. 2005. A multi-scale air quality modeling system and its evaluation I:Introduction to the model system and simulation of meteorological parameters. Chinese J Atmos Sci,29(5):805-813 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2005.05.13
    张人禾, 李强, 张若楠. 2014. 2013年1月中国东部持续性强雾霾天气产生的气象条件分析. 中国科学: 地球科学, 44(1): 27-36.

    Zhang R H, Li Q, Zhang R N. 2014. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci China Earth Sci, 57(1): 26-35
    张小曳. 2014. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征. 气象学报,72(6):1108-1117

    Zhang X Y. 2014. Characteristics of the chemical components of aerosol particles in the various regions over China. Acta Meteor Sinica,72(6):1108-1117 (in Chinese)
    张艳,余琦,伏晴艳等. 2010. 长江三角洲区域输送对上海市空气质量影响的特征分析. 中国环境科学,30(7):914-923

    Zhang Y,Yu Q,Fu Q Y,et al. 2010. Impact of the transport of atmospheric pollutants from the Yangtze River Delta on the air quality in Shanghai. China Environ Sci,30(7):914-923 (in Chinese)
    朱江,唐晓,王自发等. 2018. 大气污染资料同化与应用综述. 大气科学,42(3):607-620

    Zhu J,Tang X,Wang Z F,et al. 2018. A review of air quality data assimilation methods and their application. Chinese J Atmos Sci,42(3):607-620 (in Chinese)
    Chen D,Liu Z Q,Fast J,et al. 2016. Simulations of sulfate-nitrate-ammonium (SNA)aerosols during the extreme haze events over northern China in October 2014. Atmos Chem Phys,16(16):10707-10724 DOI: 10.5194/acp-16-10707-2016
    Chen D,Liu Z Q,Ban J M,et al. 2019. Retrospective analysis of 2015—2017 wintertime PM2.5 in China:Response to emission regulations and the role of meteorology. Atmos Chem Phys,19(11):7409-7427 DOI: 10.5194/acp-19-7409-2019
    Crippa P,Sullivan R C,Thota A,et al. 2019. Sensitivity of simulated aerosol properties over eastern North America to WRF-Chem parameterizations. J Geophys Res Atmos,124(6):3365-3383 DOI: 10.1029/2018JD029900
    Grell G A,Peckham S E,Schmitz R,et al. 2005. Fully coupled "online" chemistry within the WRF model. Atmos Environ,39(37):6957-6975 DOI: 10.1016/j.atmosenv.2005.04.027
    Li Z,Zang Z,Li Q B,et al. 2013. A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction. Atmos Chem Phys,13(8):4265-4278 DOI: 10.5194/acp-13-4265-2013
    Li Z Q,Guo J P,Ding A J,et al. 2017. Aerosol and boundary-layer interactions and impact on air quality. Natl Sci Rev,4(6):810-833 DOI: 10.1093/nsr/nwx117
    Liu Z,Liu Q,Lin H,et al. 2011. Three-dimensional variational assimilation of MODIS aerosol optical depth:Implementation and application to a dust storm over East Asia. J Geophys Res Atmos,116:D23206
    Ma C Q,Wang T J,Mizzi A P,et al. 2019. Multiconstituent data assimilation with WRF-Chem/DART:Potential for adjusting anthropogenic emissions and improving air quality forecasts over eastern China. J Geophys Res Atmos,124(13):7393-7412
    Mulcahy J P,Walters D N,Bellouin N,et al. 2014. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model. Atmos Chem Phys,14(9):4749-4778 DOI: 10.5194/acp-14-4749-2014
    Niu T,Gong S L,Zhu G F,et al. 2008. Data assimilation of dust aerosol observations for the CUACE/dust forecasting system. Atmos Chem Phys,8(13):3473-3482 DOI: 10.5194/acp-8-3473-2008
    Parrish D F,Derber J C. 1992. The national meteorological center's spectral statistical-interpolation analysis system. Mon Wea Rev,120(8):1747-1763 DOI: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    Rodwell M J,Jung T. 2008. Understanding the local and global impacts of model physics changes:An aerosol example. Quart J Roy Meteor Soc,134(635):1479-1497 DOI: 10.1002/qj.298
    Wang H,Niu T. 2013. Sensitivity studies of aerosol data assimilation and direct radiative feedbacks in modeling dust aerosols. Atmos Environ,64:208-218 DOI: 10.1016/j.atmosenv.2012.09.066
    Wang L T,Wei Z,Yang J,et al. 2014. The 2013 severe haze over southern Hebei,China:Model evaluation,source apportionment,and policy implications. Atmos Chem Phys,14(6):3151-3173 DOI: 10.5194/acp-14-3151-2014
    Wang L T,Zhang Y,Wang K,et al. 2016. Application of weather research and forecasting model with chemistry (WRF/Chem) over northern China:Sensitivity study,comparative evaluation,and policy implications. Atmos Environ,124:337-350 DOI: 10.1016/j.atmosenv.2014.12.052
    Yang Y R,Liu X G,Qu Y,et al. 2015. Characteristics and formation mechanism of continuous hazes in China:A case study during the autumn of 2014 in the North China Plain. Atmos Chem Phys,15(14):8165-8178 DOI: 10.5194/acp-15-8165-2015
    Yin X M,Sun Z B,Miao S G,et al. 2019. Analysis of abrupt changes in the PM2.5 concentration in Beijing during the conversion period from the summer to winter half-year in 2006-2015. Atmos Environ,200:319-328 DOI: 10.1016/j.atmosenv.2018.11.057
    Zang Z L,Hao Z L,Pan X B,et al. 2015. Background error statistics for aerosol variables from WRF/Chem predictions in Southern California. Asia-Pac J Atmos Sci,51(2):123-135 DOI: 10.1007/s13143-015-0063-8
    Zang Z L,Hao Z L,Li Y,et al. 2016. Background error covariance with balance constraints for aerosol species and applications in variational data assimilation. Geosci Model Dev,9(8):2623-2638 DOI: 10.5194/gmd-9-2623-2016
    Zhang L,Wang T,Lv M Y,et al. 2015. On the severe haze in Beijing during January 2013:Unraveling the effects of meteorological anomalies with WRF-Chem. Atmos Environ,104:11-21 DOI: 10.1016/j.atmosenv.2015.01.001
    Zheng Z F,Xu G R,Li Q C,et al. 2019. Effect of precipitation on reducing atmospheric pollutant over Beijing. Atmos Pollut Res,10(5):1443-1453 DOI: 10.1016/j.apr.2019.04.001

Catalog

    Article views (166) PDF downloads (75) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return