Citation: | Wu Hongyu, Wu Yao. 2025. Analysis the causes of abnormal intensity of the Dragon_boat precipitation in South China. Acta Meteorologica Sinica, 83(2):1-14. DOI: 10.11676/qxxb2025.20240049 |
The dragon boat race period around the Dragon Boat Festival every year is the period with the highest and most concentrated precipitation during the pre-flood season in South China, and heavy rainfall often leads to serious flood disasters. Analyzing climatic causes of abnormal intensity of the Dragon_boat precipitation in South China in the past 62 years is imperative for disaster prevention and mitigation. Using daily precipitation data collected at 192 national meteorological observation stations in South China from 1961 to 2022, a yearly index is constructed to characterize the intensity of the Dragon_boat precipitation in South China. Linear trend analysis, wavelet analysis, and other methods are used to analyze its changing characteristics. Using NCEP/NCAR reanalysis data and SST data, correlation and composite analysis methods are used to analyze the relationship between the intensity anomaly of the Dragon_boat precipitation in South China over the past 62 years and atmospheric circulation anomalies during the same period and preceding SST anomalies. The results show that the annual intensity index of Dragon_boat precipitation in South China has obvious interannual and interdecadal changes, while an obvious linear upward trend can be found in the past 62 years. The annual intensity index of Dragon_boat precipitation has shifted from weak before 1993 to strong afterwards. There was mainly an interannual variation cycle of 4—5 a before 1993, and there is also an interdecadal cycle of about 16 a in addition to the interannual cycles of about 2 and 6 a after 1993. Related analysis shows that during the Dragon_boat precipitation period (21 May—20 June), geopotential height in the mid-latitude region of the North Pacific decreases in the upper troposphere, the southern section of the East Asian trough in the middle troposphere is stronger, and geopotential height in northern part of South China decreases, and the southern branch trough is stronger. The presence of abnormal anticyclones to the east of the Philippines in the lower troposphere, the strengthening of the block high in the surface over the Okhotsk sea, and the weakening of the high pressure in the Northeast Pacific all are conducive to abnormally strong Dragon_boat precipitation in South China. In different interdecadal backgrounds before and after 1993, there are significant differences in the atmospheric circulation between abnormally strong and abnormally weak years during the Dragon_boat precipitation period in South China. After 1993, upper-level divergence over South China becomes stronger, and water vapor transport from the Western Pacific, the South China Sea and the bay of Bengal to southern China becomes more prominent. Meanwhile, cold air from the north to the south is stronger than before, leading to abnormally strong water vapor convergence and upward movement in southern China and large Dragon_boat precipitation intensity after 1993. Related analysis shows that the tropical Atlantic SST remains low in summer, autumn and winter of the previous year, and the maritime continent SST is also low from summer to autumn of the previous year. SST is high in the Northeast Pacific but low near the tropical North Pacific Date Line in the spring of the current year, which is conducive to strong intensity of the Dragon_boat precipitation in South China. The relationship between the strong and weak years of the Dragon_boat precipitation in South China and SST in the equatorial central and eastern Pacific is asymmetric. The strong years are mainly years of El Niño persistence or attenuation before 1993, while they were mainly years of La Niña persistence or attenuation after 1993.
陈丽娟,赵俊虎,顾薇等. 2019. 汛期我国主要雨季进程成因及预测应用进展. 应用气象学报,30(4):385-400. DOI: 10.11898/1001-7313.20190401
Chen L J,Zhao J H,Gu W,et al. 2019. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci,30(4):385-400 (in Chinese) DOI: 10.11898/1001-7313.20190401
|
范伶俐,郭品文. 2009. 广东“龙舟水”降水量成因分析. 广东海洋大学学报,29(6):61-67. DOI: 10.3969/j.issn.1673-9159.2009.06.013
Fan L L,Guo P W. 2009. Causation analysis of dragon-boat precipitation in Guangdong province. J Guangdong Ocean Univ,29(6):61-67 (in Chinese) DOI: 10.3969/j.issn.1673-9159.2009.06.013
|
谷德军,纪忠萍. 2011. 2008年广东强龙舟水与准10天振荡. 热带气象学报,27(1):11-21. DOI: 10.3969/j.issn.1004-4965.2011.01.002
Gu D J,Ji Z P. 2011. The strong Dragon-boat precipitation of Guangdong in 2008 and quasi-10-day oscillation. J Trop Meteor,27(1):11-21 (in Chinese) DOI: 10.3969/j.issn.1004-4965.2011.01.002
|
官晓军,范能柱,李婷婷,等. 2025. 孟加拉湾风暴对华南前汛期持续性极端降水过程的水汽输送机制研究. 气象学报,83(1):46-60
Guan X J,Fan N Z,Li T T,et al. 2025. Study on the water vapor transport mechanism of Bay of Bengal storms on persistent extreme precipitation events in South China during preflood season. Acta Meteor Sinica,83(1):46-60(in Chinese)
|
李丽平,周林,俞子闲. 2018. 华南前汛期降水的年代际异常特征及其成因. 大气科学学报,41(2):186-197. DOI: 10.13878/j.cnki.dqkxxb.20160224001
Li L P,Zhou L,Yu Z X. 2018. Interdecadal anomaly of rainfall during the first rainy season in South China and its possible causes. Trans Atmos Sci,41(2):186-197 (in Chinese) DOI: 10.13878/j.cnki.dqkxxb.20160224001
|
梁建茵,吴尚森. 2001. 广东省汛期旱涝成因和前期影响因子探讨. 热带气象学报,17(2):97-108. DOI: 10.3969/j.issn.1004-4965.2001.02.001
Liang J Y,Wu S S. 2001. Formation reasons of drought and flood in the rain season of Guangdong and preceding impact factors. J Trop Meteor,17(2):97-108 (in Chinese) DOI: 10.3969/j.issn.1004-4965.2001.02.001
|
林爱兰,李春晖,郑彬等. 2013. 广东前汛期持续性暴雨的变化特征及其环流形势. 气象学报,71(4):628-642. DOI: 10.11676/qxxb2013.063
Lin A L,Li C H,Zheng B,et al. 2013. Variation characteristics of sustained torrential rain during the pre-flooding season in Guangdong and the associated circulation pattern. Acta Meteor Sinica,71(4):628-642 (in Chinese) DOI: 10.11676/qxxb2013.063
|
林爱兰,谷德军,李春晖等. 2022. 影响华南汛期持续性强降水年际变化的大气环流和海温异常. 热带气象学报,38(1):1-10. DOI: 10.16032/j.issn.1004-4965.2022.001
Lin A L,Gu D J,Li C H,et al. 2022. Atmospheric circulation and sea surface temperature anomalies associated with the interannual variation of persistent heavy precipitation in flood season of South China. J Trop Meteor,38(1):1-10 (in Chinese) DOI: 10.16032/j.issn.1004-4965.2022.001
|
林良勋,吴乃庚,黄忠等. 2009. 广东2008年罕见“龙舟水”特点及成因诊断分析. 气象,35(4):43-50. DOI: 10.7519/j.issn.1000-0526.2009.4.006
Lin L X,Wu N G,Huang Z,et al. 2009. Causality analysis of the infrequent dragon-boat precipitation in Guangdong province in 2008. Meteor Mon,35(4):43-50 (in Chinese) DOI: 10.7519/j.issn.1000-0526.2009.4.006
|
刘国忠,覃月凤,覃卫坚等. 2023. 2022年广西极端“龙舟水”暴雨过程环境场特征分析. 气象研究与应用,44(1):7-13. DOI: 10.19849/j.cnki.CN45-1356/P.2023.1.02
Liu G Z,Qin Y F,Qin W J,et al. 2023. Analysis of environmental field characteristics of an extreme dragon-boat precipitation process in Guangxi in 2022. J Meteor Res Appl,44(1):7-13 (in Chinese) DOI: 10.19849/j.cnki.CN45-1356/P.2023.1.02
|
苗春生,吴志伟,何金海等. 2006. 近50年东北冷涡异常特征及其与前汛期华南降水的关系分析. 大气科学,30(6):1249-1256. DOI: 10.3878/j.issn.1006-9895.2006.06.19
Miao C S,Wu Z W,He J H,et al. 2006. The anomalous features of the northeast cold vortex during the first flood period in the last 50 years and its correlation with rainfall in South China. Chinese J Atmos Sci,30(6):1249-1256 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2006.06.19
|
钱维宏,艾阳,陈绿文等. 2020. 一次广东典型龙舟水暴雨过程的扰动形势分析. 热带气象学报,36(4):433-443. DOI: 10.16032/j.issn.1004-4965.2020.040
Qian W H,Ai Y,Chen L W,et al. 2020. Anomalous synoptic pattern of typical dragon boat precipitation process in Guangdong province. J Trop Meteor,36(4):433-443 (in Chinese) DOI: 10.16032/j.issn.1004-4965.2020.040
|
强学民,杨修群. 2013. 华南前汛期降水异常与太平洋海表温度异常的关系. 地球物理学报,56(8):2583-2593. DOI: 10.6038/cjg20130808
Qiang X M,Yang X Q. 2013. Relationship between the first rainy season precipitation anomaly in South China and the sea surface temperature anomaly in the Pacific. Chinese J Geophys,56(8):2583-2593 (in Chinese) DOI: 10.6038/cjg20130808
|
宋蔼莉,金大超,霍利微等. 2023. 热带北太平洋海温异常对2018年华南前汛期降水负异常事件的影响. 大气科学学报,46(3):392-401. DOI: 10.13878/j.cnki.dqkxxb.20200512001
Song A L,Jin D C,Huo L W,et al. 2023. Influence of SST anomalies in the tropical North Pacific on negative precipitation anomalies in South China's first rainy season in 2018. Trans Atmos Sci,46(3):392-401 (in Chinese) DOI: 10.13878/j.cnki.dqkxxb.20200512001
|
覃皓,伍丽泉,何慧. 2023. 夏季热带大西洋海温变化对华南前汛期降水的影响. 大气科学,47(5):1309-1324. DOI: 10.3878/j.issn.1006-9895.2108.21108
Qin H,Wu L Q,He H. 2023. Impact of the summer tropical atlantic sea temperature on the first rainy season precipitation in South China. Chinese J Atmos Sci,47(5):1309-1324 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2108.21108
|
覃卫坚,何莉阳,蔡悦幸等. 2023. 近30年华南地区“龙舟水”暴雨研究进展. 气象研究与应用,44(1):1-6. DOI: 10.19849/j.cnki.CN45-1356/P.2023.1.01
Qin W J,He L Y,Cai Y X,et al. 2023. Research progress of dragon-boat precipitation in South China in the past 30 years. J Meteor Res Appl,44(1):1-6 (in Chinese) DOI: 10.19849/j.cnki.CN45-1356/P.2023.1.01
|
王东海,夏茹娣,刘英. 2011. 2008年华南前汛期致洪暴雨特征及其对比分析. 气象学报,69(1):137-148. DOI: 10.11676/qxxb2011.012
Wang D H,Xia R D,Liu Y. 2011. A preliminary study of the flood-causing rainstorm during the first rainy season in South China in 2008. Acta Meteor Sinica,69(1):137-148 (in Chinese) DOI: 10.11676/qxxb2011.012
|
王彦明,高建芸,池艳珍等. 2015. 太平洋海温场不同时间尺度背景下华南前汛期持续性暴雨的统计特征. 大气科学学报,38(1):126-131. DOI: 10.13878/j.cnki.dqkxxb.20140912002
Wang Y M,Gao J Y,Chi Y Z,et al. 2015. Statistical characteristics of persistent heavy rainfall during the first rainy season in South China under the background of Pacific sea temperature fields on different time scales. Trans Atmos Sci,38(1):126-131 (in Chinese) DOI: 10.13878/j.cnki.dqkxxb.20140912002
|
吴志伟,江志红,何金海. 2006. 近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析. 大气科学,30(3):391-401. DOI: 10.3878/j.issn.1006-9895.2006.03.03
Wu Z W,Jiang Z H,He J H. 2006. The comparison analysis of flood and drought features among the first flood period in South China,Meiyu period in the Yangtze river and the Huaihe river valleys and rainy season in North China in the last 50 years. Chinese J Atmos Sci,30(3):391-401 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2006.03.03
|
伍红雨,李春梅,王迪龙. 2017. 近55年广东“龙舟水”异常特征及成因分析. 热带气象学报,33(5):608-616. DOI: 10.16032/j.issn.1004-4965.2017.05.004
Wu H Y,Li C M,Wang D L. 2017. Analysis on characteristics and abnormal causes of dragon-boat precipitation in Guangdong in the past 55 years. J Trop Meteor,33(5):608-616 (in Chinese) DOI: 10.16032/j.issn.1004-4965.2017.05.004
|
伍红雨,郭尧,邹燕等. 2021. 华南区域性暴雨过程的客观评估及异常机理分析. 暴雨灾害,40(3):306-315. DOI: 10.3969/j.issn.1004-9045.2021.03.009
Wu H Y,Guo Y,Zou Y,et al. 2021. Objective assessment and analysis of abnormal causes of regional rainstorm events in South China. Torr Rain Disaster,40(3):306-315 (in Chinese) DOI: 10.3969/j.issn.1004-9045.2021.03.009
|
伍红雨,吴遥,郑璟. 2024a. 2022年华南极端“龙舟水”与大气环流及海温异常的关系. 大气科学学报,47(3):450-459. DOI: 10.13878/j.cnki.dqkxxb.20221212001
Wu H Y,Wu Y,Zheng J. 2024a. The relationship between extreme dragon-boat precipitation and atmos-pheric circulation and SST anomaly in South China in 2022. Trans Atmos Sci,47(3):450-459 (in Chinese) DOI: 10.13878/j.cnki.dqkxxb.20221212001
|
伍红雨,郭尧,吴遥. 2024b. 近62 a华南“龙舟水”气候特征及变化. 暴雨灾害,43(1):84-92. DOI: 10.12406/byzh.2023-099
Wu H Y,Guo Y,Wu Y. 2024b. Climate characteristics and variation of the Dragon-boat precipitation in South China in the past 62 years. Torr Rain Disaster,43(1):84-92 (in Chinese) DOI: 10.12406/byzh.2023-099
|
徐士琦,刘刚,廉毅等. 2020. 近40年5—6月东北亚和北半球其他区域阻塞高压活动特征及其联系. 气象学报,78(2):221-236. DOI: 10.11676/qxxb2020.020
Xu S Q,Liu G,Lian Y,et al. 2020. Characteristics of blocking high in Northeast Asia and other areas of the northern hemisphere and their relationships during May to June in recent 40 years. Acta Meteor Sinica,78(2):221-236 (in Chinese) DOI: 10.11676/qxxb2020.020
|
臧钰歆,徐邦琪,高迎侠. 2024. 10—20 d和30—60 d低频振荡对华南前汛期持续性暴雨的影响差异及机制研究. 气象学报,82(2):137-154. DOI: 10.11676/qxxb2024.20230033
Zang Y X,Hsu P C,Gao Y X. 2024. The impacts of 10—20 d vs. 30—60 d low-frequency oscillations on South China pre-flood season persistent heavy rainfall:Comparison and associated mechanisms. Acta Meteor Sinica,82(2):137-154 (in Chinese) DOI: 10.11676/qxxb2024.20230033
|
Gill A E. 1980. Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc,106(449):447-462 DOI: 10.1002/qj.49710644905
|
Gu W,Wang L,Hu Z Z,et al. 2018. Interannual variations of the first rainy season precipitation over South China. J Climate,31(2):623-640 DOI: 10.1175/JCLI-D-17-0284.1
|
Kalnay E,Kanamitsu M,Kistler R,et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc,77(3):437-472 DOI: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
|
Wang J Z,Wang C Z. 2021. Joint boost to super El Niño from the Indian and Atlantic oceans. J Climate,34(12):4937-4954 DOI: 10.1175/JCLI-D-20-0710.1
|