中尺度斜交不稳定的波动性质及其数值模拟

WAVE PROPERTIES OF MESOSCALE OBLIQUELY CROSSING INSTABILITY AND ITS NUMERICAL SIMULATION

  • 摘要: 使用三维中小尺度扰动动力学方程组,讨论了一类与基本气流方向成任意夹角的纬向线状扰动的斜交不稳定问题,其主要分析结论如下:(1)在基本气流的切变为线性切变的情况下,可以发生斜交不稳定。但是发生斜交不稳定必须要求沿着线状扰动方向的基本气流存在切变或者垂直于线状扰动方向的基本气流存在切变。此时,斜交不稳定的波动性质是重力惯性内波,而不存在涡旋Rossby波。(2)对于基本气流具有非线性二阶切变的情形,此时斜交型不稳定中的扰动除了包含重力惯性内波之外,还包含了涡旋Rossby波。对于本文所讨论的纬向线状扰动来说,涡旋Rossby波产生的物理根源是基本流场的经向风速二次切变,该涡旋Rossby波相对于基本气流是单向传播的。在中尺度斜交不稳定中,涡旋Rossby波的产生主要是由于在与线状扰动相垂直的方向上存在基本气流的二阶切变,而与线状扰动相平行的方向上基本气流是否存在二阶切变无关。(3)对于通常讨论的纬向线状扰动的情况,在基本流场的南北风速存在二次切变时,即与线状扰动相垂直的方向上存在基本气流的二阶切变,则斜交不稳定有可能是混合的涡旋Rossby—重力惯性内波的不稳定。最后采用WRF模式,对2006年6月的一次福建闽江暴雨过程进行了数值模拟,部分验证了上述结论。通过分析6月6日13时降水区域平均的东西方向风速 随高度变化的曲线, 发现在950—100 hPa 的大气中, 纬向风速随高度的变化具有二次切变, 在对流层低层以及高层附近纬向风速较小, 而在对流层中层400 hPa附近的纬向风速则较大。在这种情况下,平均纬向风速随高度变化的二阶导数不为零,因此激发产生沿着纬向传播的涡旋Rossby波,这对于暴雨区域中β中尺度雨团的移动起到比较重要的作用。再分析6月5日23时和6月6日13时的850 hPa以及500 hPa降水区域平均纬向风随南北方向的变化,发现在6月5日23时和6月6日13时的850 hPa层次上,都显示出平均纬向风速在南北方向具有二次切变;而在这两个时次的500 hPa层次上,平均纬向风速在南北方向不具有二次切变,只具有线性切变。说明在垂直方向上,对流层低层涡旋Rossby波容易被激发产生;而在对流层中层以上,由于不具备产生涡旋Rossby波的条件,因此不容易激发产生涡旋Rossby波,波动只是具有重力惯性内波的特征。

     

    Abstract: By using the system of 3D dynamic equations for small-and meso-scale disturbances the series investigation is performed of obliquely crossing instability of zonal line-like disturbance moving at an arbitrary angle with basic flow, arriving at the results as follows: (1) with linear shear available, the obliquely crossing instability of disturbances will occur only when the flow shearing happens in the direction along or perpendicular to the line-like disturbance movement, with the obliquely crossing instability showing the instability of internal inertial gravity waves; (2) in the presence of second order non-linear shear the disturbance of obliquely crossing instability includes internal inertial gravity and vortex Rossby waves. For the zonal line form disturbance under study, the vortex Rossby wave has its source in the second shear of meridional wind speed in the flow and propagates unidirectionally with respect to. As meso-scale obliquely crossing unstable disturbances, the vortex Rossby wave has its origin from the second shear of the flow in the direction vertical to line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line like disturbances, if the second shear happens in meridional wind speed , i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the obliquely crossing instability of disturbances is likely to be the instability of mixed Vortex Rossbyinternal inertial gravity waves. Finally, we have simulated the rainstorm process in the Fujian Province in the June of 2006 by use of the WRF model to verify the foregoing theoretical results. By analysing the vertical profile of the averaged U over the precipitation area at 13:00 BST June 6, 2006, it is found that in the atmosphere between 950 and 100 hPa, the zonal wind U had the second order shear with altitude, with the small speed in lower and upper troposphere, and the larger speed in middle troposphere near the 400 hPa. In such a circumstance, the second order derivative of the averaged zonal wind U with respect to altitude was not zero, and therefore triggered the vortex Rossby Waves, which played an important role in the moving of the β meso-scale rain cluster in the heavy rainfall area. By analyzing the meridional variation of 850 hPa and 500 hPa averaged zonal winds over the precipitation area both at 23:00 BST June 5 and at 13:00 BST June 6, it is found that there existed the second-order meridional shear of the averaged zonal wind both on June 5 and June 6 at 850 hPa, but at 500 hPa there only existed the linear meridional shear instead of the second meridional shear. The analysis indicate that it's easy to produce the vortex Rossby waves in the lower troposphere, but difficult in the middle and upper troposphere since not having condition producing vortex Rossby waves, implying the waves there are solely internal inertia gravity waves.

     

/

返回文章
返回