Abstract:
Latest research results indicate that lightning can be measured by using satellite optical sensor, Schumann resonances and the time of arrival (TOA) techniques at very low frequency. It is observed that high lightning density areas mainly lie in seaboards, mountains, high frequency mesoscale cyclone areas and convergent regions of the tropical convergence zone. 88% of global lightning discharges occur in continent, island and seaboard areas. The three regions hit most frequently by lightning are Congo in equatorial Africa, South America, and South and Southeast Asia. A lot of studies reveal that the global lightning activity is directly linked to the Earth's climate and climate change. The global lightning activity responds positively to temperature changes on many time scales, such as diurnal, pentad, intraseasonal, semiannual, annual, ENSO, and decadal time scales. However, the sensitivity of lightning to temperature appears to diminish at longer time scales. Since lightning can be monitored easily and continuously, it may become a useful tool for monitoring changes in important climate parameters. The lightning discharge is a significant producing source of nitrogen oxides (NOx) in the atmosphere, which is closely associated with ozone production and the Earth's radiation balance. There appears to be a robust positive correlation between lightning activity and upper tropospheric water vapor on short time scales. The effect of aerosol on thunderstorm and lightning is uncertain. More observations and investigations are needed to identify the coupling mechanism between lightning and climate change.