Abstract:
Due to the increasing requirement for high-level weather and climate forecasting accuracy, it is necessary to exploit a strategy for model error correction while developing numerical modeling and data assimilation techniques. This study classifies the correction strategies according to the types of forecast errors, and reviews recent studies on these correction strategies. Among others, the analogue-dynamical method has been developed in China, which combines statistical methods with the dynamical model, corrects model errors based on analogue information, and effectively utilizes historical data in dynamical forecasts. In this study, the fundamental principles and technical solutions of the analogue-dynamical method and associated development history for forecasts on different timescales are introduced. It is shown that this method can effectively improve medium- and extended-range forecasts, monthly-average circulation forecast, and short-term climate prediction. As an innovative technique independently developed in China, the analogue-dynamical method plays an important role in both weather forecast and climate prediction, and has potential applications in wider fields.