温湿统计平衡约束关系对GRAPES全球湿度分析的作用
The impact of a balance constraint between temperature and humidity on the global humidity analysis in GRAPES
-
摘要: 为改进GRAPES全球三维变分同化系统(GRAPES-3DVar)的湿度分析,借鉴Hólm等(2002)的思想,在背景误差协方差结构中引入湿度与温度的统计平衡约束关系。通过扣除湿度变化中与温度有关的平衡部分获取非平衡拟相对湿度,并引入非线性对称变换对其做标准化处理,将处理后的变量作为新的湿度控制变量。统计结果表明,温湿统计平衡约束主要出现在中高纬度对流层中层相对湿度大于80%的区域,与大尺度抬升凝结加热有关;新的湿度控制变量能满足无偏、高斯分布特征。单点理想观测试验结果表明,新的湿度分析具备了流依赖特征,并能有效地抑制负水汽与超饱和水汽的出现。同化循环与预报试验结果表明,新方案给出的湿度分析的偏差和均方根误差均有所减小。而针对降水预报的检验结果表明,引入新方案后的0.1-10 mm降水预报,在ETS评分没有显著降低的情况下,BIAS评分更靠近1,降水空报有所减缓。然而60-84 h的25 mm以上的降水漏报现象更为明显,表明湿度同化分析方案还有改进空间。通过引入温湿统计平衡约束关系,完善了GRAPES-3DVar分析框架,为全球湿度分析的持续改进奠定了坚实基础。Abstract: In order to improve the humidity analysis in GRAPES global three dimensional variational data assimilation system (GRAPES-3DVar), a statistical balance constraint between temperature and humidity has been introduced into the formulation of background error covariance based on the previous work by Hólm et al. (2002).By deducting the balanced part associated with temperature and using a nonlinear normalization method, the normalized unbalanced pseudo-relative humidity is used as the new humidity control variable. Statistical results show that the coupling between temperature and humidity is related to large scale upwelling and condensation and mainly appears in areas where the environmental relative humidity is larger than 80%. Such areas are often found in the middle troposphere over mid-and high-latitudes. The results also show that the new humidity control variable is nearly unbiased with a Gaussian distribution pattern of error characteristics. Experiments of single pseudo-observation show that the analysis is flow-dependent and the problem of negative moisture and super-saturation is less severe by using the new humidity analysis scheme. Results of cycle analysis and forecast experiments indicate that the bias and root mean square error of the humidity analysis both decrease. The precipitation verification results show that, for the 0.1-10 mm precipitation forecast at 24 hour interval, the Equitable threat score (ETS) changes little, but the bias score (BIAS) is much closer to 1 and the false alarm rate decreases. However, the miss rate for heavy rainfall (> 25 mm) in the 60-84 hour forecast has increased, which means the humidity analysis needs further improvement in the future. This study improves GRAPES 3DVAR by introducing the statistical balance constraint between temperature and humidity into the system, which has laid a solid foundation for continuous improvements of the global humidity analysis in the future.
-
-
郝民, 龚建东, 王瑞文等. 2015. 中国L波段探空湿度观测的质量评估及偏差订正. 气象学报, 73(1):187-199. Hao M, Gong J D, Wang R W, et al. 2015. The quality assessment and correction of the radiosonde humidity data biases of L-band in China. Acta Meteor Sinica, 73(1):187-199(in Chinese) 薛纪善, 庄世宇, 朱国富等. 2008. GRAPES新一代全球/区域变分同化系统研究. 科学通报, 53(20):2408-2417. Xue J S, Zhuang S Y, Zhu G F, et al. 2008. A study of GRAPES new generation global/regional variational data assimilation. Chin Sci Bull, 53(20):2408-2417 王金成, 庄照荣, 韩威等. 2014. GRAPES全球变分同化背景误差协方差的改进及对分析预报的影响:背景误差协方差三维结构的估计. 气象学报, 72(1):62-78. Wang J C, Zhuang Z R, Han W, et al. 2014. An improvement of background error covariance in the global GRAPES variational data assimilation and its impact on the analysis and prediction:Statistics of the three-dimensional structure of background error covariance. Acta Meteor Sinica, 72(1):62-78(in Chinese) 王瑞春, 龚建东, 张林等. 2014. 利用整层模式大气统计求解GRAPES-3DVAR动力平衡约束的数值试验. 热带气象学报, 30(4):633-642. Wang R C, Gong J D, Zhang L, et al. 2014. Numerical experiments on statistical estimation of dynamic balance constraints in GRAPES-3DVR with whole layers of model atmosphere. J Trop Meteor, 30(4):633-642(in Chinese) 王瑞春, 龚建东, 张林等. 2015. 热带风压场平衡特征及其对GRAPES系统中同化预报的影响研究Ⅱ:动力与统计混合平衡约束方案的应用. 大气科学, 39(6):1225-1236. Wang R C, Gong J D, Zhang L, et al. 2015. Tropical balance characteristics between mass and wind fields and their impact on analyses and forecasts in GRAPES system. PartⅡ:Application of linear balance equation-regression hybrid constraint scheme. Chinese J Atmos Sci, 39(6):1225-1236(in Chinese) Agusti-Panareda A, Vasiljevic D, Bejaars A, et al. 2009. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Quart J Roy Meteor Soc, 135(640):595-617
Andersson E, Bauer P, Beljaars A, et al. 2005. Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull AmerMeteor Soc, 86(3):387-402
Andersson E, Hólm E, Bauer P, et al. 2007. Analysis and forecast impact of the main humidity observing systems. Quart J Roy Meteor Soc, 133(627):1473-1485
Bengtsson L, Hodges K. 2005. On the impact of humidity observations in numerical weather prediction. Tellus, 57A(5):701-708
Berre L. 2000. Estimation of synoptic and mesoscale error covariances in a limited-area model. Mon Wea Rev, 128(3):644-667
Bian J, Chen H, Holger V, et al. 2011. Intercomparison of humidity and temperature sensors:GTS1, Vaisala RS80, and CFH. Adv Atmos Sci, 28(1):139-146
Chen Y, Rizvi S R H, Huang X, et al. 2013. Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions. Meteor Atmos Phys, 121(1-2):79-98
Christian H. 2006. Assessment, correction and impact of the dry bias in radiosonde humidity data during the MAP SOP. Quart J Roy Meteor Soc, 132(621):2827-2852
Courtier P, Thépaut J N, Hollingsworth A. 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Quart J Roy Meteor Soc, 120(519):1367-1387
Dee D, Silva A. 2003. The choice of variable for atmospheric moisture analysis. Mon Wea Rev, 131(1):155-171
Dee D, Uppala S, Simmons A, et al. 2011. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system. Quart J Roy Meteor Soc, 137(656):553-597
Gustafsson N, Thorsteinsson S, Stengel M, et al. 2011. Use of a nonlinear pseudo-relative humidity variable in a multivariate formulation of moisture analysis. Quart J Roy Meteor Soc, 137(657):1004-1018
Hólm E, Andersson E, Beljaars A, et al. 2002. Assimilation and modelling of the hydrological cycle:ECMWF's status and plans. ECMWF Technical Memorandum 383
Huang X, Xiao Q, Barker D, et al. 2009. Four-dimensional variational data assimilation for WRF:Formulation and preliminary results. Mon Wea Rev, 137(1):299-314
Ingleby B, Lorenc A, Ngan K, et al.2013. Improved variational analyses using a nonlinear humidity control variable. Quart J Roy Meteor Soc, 139(676):1875-1887
Kleist D T, Parrish D F, Derber J C, et al. 2009. Introduction of the GSI into the NCEP global data assimilation system. Wea Forecasting, 24(6):1691-1705
Lorenc A C. 1986. Analysis methods for numerical weather prediction. Quart J Roy Meteor Soc, 112(474):1177-1194
Lorenc A, Barker D, Bell R, et al. 1996. On the use of radiosonde humidity observations in mid-latitude NWP. Meteor Atmos Phys, 60(1):3-17
Mahfouf J. 1998. Influence of physical processes on the tangent linear approximation. ECMWF Technical Memorandum 261
Sun B, Reale A, Seidel D, et al. 2010. Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J Geophys Res, 115:D23104
Tompkins A, Gierens K, Rädel G. 2007. Ice supersaturation in the ECMWF integrated forecast system. Quart J Roy Meteor Soc, 133(622):53-63
-
期刊类型引用(5)
1. 瞿安祥 ,麻素红 ,张进 ,刘艳 . CMA-GFS全球预报系统中的台风初始化. 气象学报. 2022(02): 269-279 . 本站查看
2. 霍振华,李晓莉,陈静,刘永柱. GRAPES全球模式静力平衡奇异向量改进及应用试验. 气象学报. 2021(02): 282-299 . 本站查看
3. 庄照荣,王瑞春,李兴良. 全球大尺度信息在3km GRAPES-RAFS系统中的应用. 气象学报. 2020(01): 33-47 . 本站查看
4. 龚建东,张林,王金成. 背景误差水平相关结构对四维变分资料同化的影响研究. 气象学报. 2020(06): 988-1001 . 本站查看
5. 王瑞春,龚建东. 变分同化框架通过背景误差协方差构建动力平衡约束的研究进展. 气象. 2016(09): 1033-1044 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1819
- HTML全文浏览量: 12
- PDF下载量: 1414
- 被引次数: 6