Abstract:
Based on station precipitation data from China National Meteorological Center (NMC) and monthly mean reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), the spatial-temporal variations of spring precipitation over Southwest China and characteristic circulations associated with precipitation anomalies during 1951-2013 have been investigated. Results show that the most significant mode of spring precipitation is consistent over Southwest China with periodic cycles of 2.5-3.5 a and quasi-5 a. Atmospheric water vapor is transported from oceans to inland areas of Southwest China by anomalous cyclonic circulation wave trains in the middle and lower troposphere of the subtropical region. The warm moist airmass intersect with cold airmass from the north in Southwest China. Meanwhile, the pumping effect caused by low level convergence and upper level divergence results in strong ascending motion in the complex terrain area. The above circulation features are favorable for rainfall over Southwest China, and vice versa. Circulation anomalyies in Southwest China are partly attributed to potential vorticity energy perturbations caused by anomalous convergence and divergence in Southwest China and the tropics, and partly attributed to dissipation and convergence of wave turbulence from the middle and high latitude to downstream region in Eurasia. In addition, surface heating in January on the Tibetan Plateau would be an early signal for the prediction of spring precipitation anomaly over Southwest China.