CICE海冰模式中反照率相关参数对北极海冰模拟的影响

储敏, 房永杰, 张录军, 吴统文

储敏, 房永杰, 张录军, 吴统文. 2018: CICE海冰模式中反照率相关参数对北极海冰模拟的影响. 气象学报, 76(3): 461-472. DOI: 10.11676/qxxb2018.010
引用本文: 储敏, 房永杰, 张录军, 吴统文. 2018: CICE海冰模式中反照率相关参数对北极海冰模拟的影响. 气象学报, 76(3): 461-472. DOI: 10.11676/qxxb2018.010
Min CHU, Yongjie FANG, Lujun ZHANG, Tongwen WU. 2018: Influence of albedo related parameters on the simulation of Arctic sea ice by CICE. Acta Meteorologica Sinica, 76(3): 461-472. DOI: 10.11676/qxxb2018.010
Citation: Min CHU, Yongjie FANG, Lujun ZHANG, Tongwen WU. 2018: Influence of albedo related parameters on the simulation of Arctic sea ice by CICE. Acta Meteorologica Sinica, 76(3): 461-472. DOI: 10.11676/qxxb2018.010

CICE海冰模式中反照率相关参数对北极海冰模拟的影响

基金项目: 

公益性行业(气象)科研专项 GYHY201506011

国家重点基础研究计划973项目 2015CB953900

详细信息
    作者简介:

    储敏, 主要从事海冰模式发展和气候变化方面的研究。E-mail:chumin@cma.gov.cn

    通讯作者:

    房永杰, 主要从事气候系统模式发展和模拟方面研究。E-mail:fangyj@cma.gov.cn

  • 中图分类号: P461.+6;P435

Influence of albedo related parameters on the simulation of Arctic sea ice by CICE

  • 摘要: 国家气候中心气候系统模式BCC_CSM2.0最新耦合了美国Los Alamos国家实验室发展的海冰模式CICE5.0,为试验模式中与反照率相关参数的敏感性及其对模拟结果的影响,提高模式对北极海冰的模拟能力,选取海冰模式中3个主要参数进行了敏感性试验。利用以BCC_CSM2.0耦合框架为基础建立的海冰-海洋耦合模式,选取CORE资料为大气强迫场开展试验,试验的3个参数分别为冰/雪表面反射率、雪粒半径和雪粒半径参考温度。结果表明,参数取值的不同对北极海冰的模拟有显著的影响,优化后的取值组合极大提高了模式的模拟能力,主要表现在:(1)改善了对北极冬季海冰厚度的模拟,海冰厚度增大,与观测资料更为吻合;(2)显著提高了对北极夏季海冰密集度的模拟能力,从而模拟的北极海冰范围年际循环与观测更为一致。参数取值的优化改进了模式对海冰反照率的模拟,进而影响了冰面短波辐射的吸收和海冰表层的融化,最终提高了模式对海冰密集度和厚度的模拟效果。
    Abstract: The Los Alamos sea ice model CICE5.0 has been coupled to Beijing Climate Center Climate System Model (BCC_CSM2.0). To evaluate the effects of parameter optimization and improve the model performance on Arctic sea ice simulation, three parameters, including the emissivity, the maximum melting snow grain radius and the reference temperature of snow grain radius, are selected for sensitivity analysis. All numerical experiments are carried out with the ice-ocean model based on the BCC_CSM2.0 while the atmospheric circulation model is replaced by data model and forcing data are from Coordinated Ocean-ice Reference Experiments (CORE) data set. Results show that the model performance on Arctic sea ice simulation has been satisfactorily improved after the three parameters are tuned. (1) The sea ice thickness increases remarkably not only in the winter but also in the summer and is more comparable with observations. (2) The spatial distribution of summer ice concentration resembles observations better and the simulated sea ice extent significantly improves. Analysis of sea ice mass budget reveals that parameter optimization has enhanced the physics of albedo, which in turn affects the absorption of solar radiation and finally improves the model capability for simulations of sea ice concentration and thickness. However, some problems still remain especially in the simulation of sea ice area in the winter.
  • 图  1   观测和模拟的1980—1999年北极9月平均海冰密集度

    Figure  1.   Arctic sea ice concentrations in September during 1980-1999 from model simulations and observations

    图  2   观测和模拟的1980—1999年北极3月平均海冰厚度(单位:m)

    Figure  2.   Arctic sea ice thickness (unit: m) in March during 1980-1999 from model simulations and observations

    图  3   观测和模拟的1980—1999年北极9月平均海冰厚度(单位:m)

    Figure  3.   Arctic sea ice thickness (unit: m) in September during 1980-1999 from model simulations and observations

    图  4   观测和模拟的1980—1999年平均北极海冰范围的年循环

    Figure  4.   Annual cycle of mean Arctic sea ice extent during 1980-1999 from model simulations and observations

    图  5   观测和模拟的1980—1999年9月的北极海冰范围

    Figure  5.   Arctic sea ice extent in September during 1980-1999 from model simulations and observations

    图  6   模拟的1980—1999年平均北极海冰冻融收支年循环(单位:cm/month)

    Figure  6.   Annual cycle of mean Arctic sea ice mass budget (unit: cm/month) during 1980-1999 from model simulations

    图  7   模拟的1980—1999年平均北极海冰表面融化年循环(单位:cm/month)

    Figure  7.   Annual cycle of mean Arctic sea ice surface melt (unit: cm/month) during 1980-1999 from model simulations

    图  8   模拟的1980—1999年北极夏季(6—8月)平均冰面净短波辐射通量(单位:W/m2)

    Figure  8.   Net downward solar fluxes (unit: W/m2) on ice cover in Jun-Aug during 1980-1999 from model simulations

    图  9   模拟的1980—1999年北极夏季(6—8月)平均冰面反照率(单位:%)

    Figure  9.   Ice surface albedo (unit: %) in Jun-Aug during 1980-1999 from model simulations

    图  10   参数影响示意

    Figure  10.   Pathway of effects from parameters

    表  1   模式试验及参数配置

    Table  1   Experiments and parameters

    试验名称 雪粒半径(μm) 反射率 参考温度(℃)
    Run1 1500 0.95 1.5
    Run2 700 0.95 1.5
    Run3 700 0.985 1.5
    Run4 700 0.985 0.5
    下载: 导出CSV
  • 柏晶瑜, 徐祥德, 苗秋菊. 2000.北极海冰"强信号"影响域.气象学报, 58(4):485-491. DOI: 10.11676/qxxb2000.051

    Bai J Y, Xu X D, Miao Q J. 2000. The Arctic sea-ice "strong-signal" region. Acta Meteor Sinica, 58(4):485-491 (in Chinese) DOI: 10.11676/qxxb2000.051

    丁永建, 张世强. 2015.冰冻圈水循环在全球尺度的水文效应.科学通报, 60(7):593-602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201507002.htm

    Ding Y J, Zhang S Q. 2015. The hydrological impact of cryosphere water cycle on global-scale water cycle. Chin Sci Bull, 60(7):593-602 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201507002.htm

    房永杰, 储敏, 吴统文等. 2017. CICE5.0与BCC_CSM2.0模式的耦合及对北极海冰的模拟评估.海洋学报, 39(5):33-43. http://www.cmsjournal.net/qxxb_cn/ch/reader/download_new_edit_content.aspx?file_no=201702070000001&edit_id=20171227092938348&journal_id=qxxb_cn&falg=2

    Fang Y J, Chu M, Wu T W, et al. 2017. Coupling of CICE5.0 with BCC_CSM2.0 model and its performance evaluation on Arctic sea ice simulation. Haiyang Xuebao, 39(5):33-43 (in Chinese) http://www.cmsjournal.net/qxxb_cn/ch/reader/download_new_edit_content.aspx?file_no=201702070000001&edit_id=20171227092938348&journal_id=qxxb_cn&falg=2

    邱博, 张录军, 储敏等. 2015.气候系统模式对于北极海冰模拟分析.极地研究, 27(1):47-55. http://mall.cnki.net/magazine/Article/JDYZ201501007.htm

    Qiu B, Zhang L J, Chu M, et al. 2015. Performance analysis of Arctic sea ice simulation in climate system models. Chin J Polar Res, 27(1):47-55 (in Chinese) http://mall.cnki.net/magazine/Article/JDYZ201501007.htm

    谭慧慧, 张录军, 储敏等. 2015. BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析.大气科学, 39(1):197-209. DOI: 10.3878/j.issn.1006-9895.1404.13301

    Tan H H, Zhang L J, Chu M, et al. 2015. An analysis of simulated global sea ice extent, thickness, and causes of error with the BCC_CSM model. Chinese J Atmos Sci, 39(1):197-209 (in Chinese) DOI: 10.3878/j.issn.1006-9895.1404.13301

    武炳义, 杨琨. 2016.从2011/2012和2015/2016年冬季大气环流异常看北极海冰以及前期夏季北极大气环流异常的作用.气象学报, 74(5):683-696. http://www.cmsjournal.net/qxxb_cn/ch/reader/view_abstract.aspx?file_no=2016068&flag=1

    Wu B Y, Yang K. 2016. Roles of Arctic sea ice and the preceding summer Arctic atmospheric circulation anomalies in the atmospheric circulations anomalies of 2011/2012 and 2015/2016 winters. Acta Meteor Sinica, 74(5):683-696 (in Chinese) http://www.cmsjournal.net/qxxb_cn/ch/reader/view_abstract.aspx?file_no=2016068&flag=1

    吴统文, 宋连春, 李伟平等. 2014.北京气候中心气候系统模式研发进展:在气候变化研究中的应用.气象学报, 72(1):12-29. DOI: 10.11676/qxxb2013.084

    Wu T W, Song L C, Li W P, et al. 2014. An overview on progress in Beijing Climate Center climate system model:Its development and application to climate change studies. Acta Meteor Sinica, 72(1):12-29 (in Chinese) DOI: 10.11676/qxxb2013.084

    周天军, 陈晓龙. 2015.气候敏感度、气候反馈过程与2℃升温阈值的不确定性问题.气象学报, 73(4):624-634. DOI: 10.11676/qxxb2015.057

    Zhou T J, Chen X L. 2015. The uncertainty in the 2℃ warming threshold issue as related to climate sensitivity and climate feedback. Acta Meteor Sinica, 73(4):624-634 (in Chinese) DOI: 10.11676/qxxb2015.057

    Alexander M A, Bhatt U S, Walsh J E, et al. 2004. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Climate, 17(5):890-905 DOI: 10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2

    Bitz C M, Lipscomb W H. 1999. An energy-conserving thermodynamic model of sea ice. J Geophys Res, 104(C7):15669-15677 DOI: 10.1029/1999JC900100

    Björk G, Stranne C, Borenäs K. 2013. The sensitivity of the Arctic Ocean sea ice thickness and its dependence on the surface albedo parameterization. J Climate, 26(4):1355-1370 DOI: 10.1175/JCLI-D-12-00085.1

    Briegleb B P, Light B. 2007. A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the community climate system model. NCAR Tech. Note NCAR/TN-472+ STR. 100. Boulder, Colorado: NCAR

    Cavalieri D J, Parkinson C L. 2012. Arctic sea ice variability and trends, 1979-2010. Cryosphere, 6(4):881-889 DOI: 10.5194/tc-6-881-2012

    Comiso J C. 1999. Bootstrap sea ice concentrations from NIMBUS-7 SMMR and DMSP SSM/I-SSMIS, Version 2. Boulder, Colorado USA: National Snow and Ice Data Center

    Griffies SM, Gnanadesikan A, Dixon K W, et al. 2005. Formulation of an ocean model for global climate simulations. Ocean Sci, 1(1):45-79 DOI: 10.5194/os-1-45-2005

    Griffies S M, Biastoch A, Böning C, et al. 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Mod, 26(1-2):1-46 DOI: 10.1016/j.ocemod.2008.08.007

    Hunke E C, Dukowicz J K. 1997. An elastic viscous plastic model for sea ice dynamics. J Phys Oceanogr, 27(9):1849-1867 DOI: 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2

    Hunke E C, Lipscomb W H, Turner A K, et al. 2013. CICE: The Los Alamos Sea Ice Model Documentation and Software User's Manual Version 5. 0 LA-CC-06-012. Los Alamos NM: Los Alamos National Laboratory, 115pp

    Jahn A, Holland M M. 2013. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys Res Lett, 40(6):1206-1211 DOI: 10.1002/grl.50183

    Ji J J, Huang M, Li K R. 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci China Ser D:Earth Sci, 51(6):885-898 DOI: 10.1007/s11430-008-0039-y

    Kiehl J T, Gent P R. 2004. The community climate system model, version 2. J Climate, 17(19):3666-3682 DOI: 10.1175/1520-0442(2004)017<3666:TCCSMV>2.0.CO;2

    Kim J G, Hunke E C, Lipscomb W H. 2006. Sensitivity analysis and parameter tuning scheme for global sea-ice modeling. Ocean Mod, 14(1-2):61-80 http://www.sciencedirect.com/science/article/pii/S146350030600028X

    Kwok R, Cunningham G F, Wensnahan M, et al. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover:2003-2008. J Geophys Res, 114(C7):C07005, doi: 10.1029/2009JC005312

    Kwok R. 2011. Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J Geophys Res, 116(C8):C00D05, doi: 10.1029/2011JC007004

    Large W G, Yeager S G. 2009. The global climatology of an interannually varying air-sea flux data set. Climate Dyn, 33(2-3):341-364 DOI: 10.1007/s00382-008-0441-3

    Levermann A, Mignot J, Nawrath S, et al. 2007. The role of northern sea ice cover for the weakening of the thermohaline circulation under global warming. J Climate, 20(16):4160-4171 DOI: 10.1175/JCLI4232.1

    Lipscomb W H, Hunke E C, Maslowski W, et al. 2007. Ridging, strength, and stability in high-resolution sea ice models. J Geophys Res, 112(C3):C03S91, doi: 10.1029/2005JC003355

    Lovely A, Loose B, Schlosser P, et al. 2015. The gas transfer through polar sea ice experiment:Insights into the rates and pathways that determine geochemical fluxes. J Geophys Res, 120(12):8177-8194, doi: 10.1002/2014JC010607

    Meier W N, Hovelsrud G K, van Oort B EH, et al. 2014. Arctic sea ice in transformation:A review of recent observed changes and impacts on biology and human activity. Rev Geophys, 51(3):185-217, doi: 10.1002/2013RG000431

    Miller P A, Laxon S W, Feltham D L, et al. 2006. Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J Climate, 19(7):1089-1108 DOI: 10.1175/JCLI3648.1

    Parkinson C L, Vinnikov K Y, Cavalieri D J. 2006. Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice cover ages by 11 major global climate models. J Geophys Res, 111(C7):C07012, doi: 10.1029/2005JC003408

    Parkinson C L, Cavalieri D J. 2008. Arctic sea ice variability and trends, 1979-2006. J Geophys Res, 113(C7):C07003, doi: 10.1029/2007JC004558

    Polyak L, Alley R B, Andrews J T, et al. 2010. History of sea ice in the Arctic. Quat Sci Rev, 29(15-16):1757-1778 DOI: 10.1016/j.quascirev.2010.02.010

    Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108(D14):4407, doi: 10.1029/2002JD002670

    Stroeve J C, Kattsov V, Barrett A, et al. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett, 39(16):L16502, doi: 10.1029/2012GL052676

    Tietsche S, Balmaseda M A, Zuo H, et al. 2014. Arctic sea ice in the ECMWF MyOcean2 ocean reanalysis ORAP5. Tech Rep 737. Reading, UK: European Center for Medium-Range Weather Forecasts

    Uotila P, O'Farrell, Marsland S J, et al. 2012. A sea-ice sensitivity study with a global ocean-ice model. Ocean Mod, 51:1-18 DOI: 10.1016/j.ocemod.2012.04.002

    Urrego-Blanco J R, Urban N M, Hunke E C, et al. 2016. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model. J Geophys Res, 121(4):2709-2732 DOI: 10.1002/2015JC011558

    Walsh J E. 1983. The role of sea ice in climatic variability:Theories and evidence. Atmos-Ocean, 21(3):229-242 DOI: 10.1080/07055900.1983.9649166

    Winton M. 2000. A reformulated three-layer sea ice model. J Atmos Oceanic Technol, 17(4):525-531 DOI: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2

    Wu T W, Yu R C, Zhang F, et al. 2010. The Beijing Climate Center atmospheric general circulation model:Description and its performance for the present-day climate. Climate Dyn, 34(1):123-147 DOI: 10.1007/s00382-008-0487-2

图(10)  /  表(1)
计量
  • 文章访问数:  1052
  • HTML全文浏览量:  54
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-12
  • 修回日期:  2017-12-24
  • 发布日期:  2018-05-31

目录

    /

    返回文章
    返回