Dual Doppler radar observations and analysis of the structure of a severe hailstorm
-
摘要: 利用石家庄SA多普勒天气雷达和饶阳X波段双偏振雷达探测资料,结合常规综合观测资料,对2018年6月13日下午发生于太行山东麓的雹云的天气背景、降雹特征、雷达回波演变特征及回波三维立体结构进行了综合分析,重点利用双多普勒雷达径向速度资料反演出格点的三维风速(流场),并结合回波特征分析了雹云云体结构。结果显示,高空强劲的偏北风急流促使涡后横槽转竖,槽后冷空气沿偏北气流南下,形成上干冷、下暖湿的不稳定层结,在低空低涡附近及地面辐合线上发展造成这次风雹天气;双多普勒雷达反演风场表明,雹云的中层强回波中心呈明显的“S”形水平流场和悬挂回波配置特征,构成了具有成雹的“0线”结构;不仅佐证了雹云降雹“0线”结构的存在,而且证明其呈现形式具有多样性。
-
关键词:
- 强雹云 /
- 回波三维结构 /
- S形流场 /
- 双多普勒雷达风场反演 /
- 观测分析
Abstract: A comprehensive analysis is conducted to investigate the weather background, hail characteristics, radar echo evolution and three-dimensional echo structure of the hail clouds that developed in the eastern foothill of the Taihang Mountains in the afternoon of 13 June 2018. Observations of the SA Doppler weather radar in Shijiazhuang and the X-band dual polarization radar in Raoyang are used in this study. Three-dimensional (3D) gridded wind velocity (flow field) is retrieved from the radial velocity of the dual Doppler radar, and the hail cloud structure is analyzed based on the echo characteristics. The results show that the strong upper-level northerly jet caused the transverse trough to turn vertical, and the cold air behind the trough moved southward along the northerly airflow. Unstable stratification developed with cold and dry air above warm and wet air, which resulted in the hail weather near the low-level vortex and along the convergence line in the surface. The wind field retrieved from dual-Doppler radar observations shows that in the middle layer of the hail storm, there existed obvious S-shaped horizontal flow with characteristics of suspended echo. This is a typical "zero-line" structure conductive to hail formation. The existence of the "zero line" structure is confirmed by the observed 3D structure in hail storm and the diversity of its manifestation is demonstrated. -
-
图 1 (a) 2018年6月13日08时500 hPa风场、高度场及850 hPa温度场 (黑色实线为500 hPa高度场,红色细线为850 hPa温度场,蓝色箭头为500 hPa大风速核,棕色实线为500 hPa槽线,红色粗实线为850 hPa切变线,灰色实线为925 hPa切变线),(b) 6月13日北京订正探空 (斜杠区为订正后的对流有效位能)
Figure 1. (a) Winds and geopotential height at 500 hPa,and temperature at 850 hPa on 13 June 2018 (black solid lines are geopotential height contours at 500 hPa,red thin lines show temperature at 850 hPa,the blue arrow indicates the gale velocity core at 500 hPa,the brown solid line shows the trough line at 500 hPa,the red thick line is shear line at 850 hPa,and the gray solid line is shear line at 925 hPa), (b) revised sounding chart at Beijing on 13 June 2018 (shaded area along the oblique line indicates revise CAPE)
图 2 2018年6月13日风雹自北向南移动路径 (新乐雷达0.5°仰角回波强中心(≥45 dBz)演变,三角为降雹区,绿色方框为主降雹区)
Figure 2. Moving path of the hail storm occurred on 13 June 2018 (evolution of the echo intensity center (≥45 dBz) from Xinle radar at 0.5° elevation. The triangles indicate hail areas, and the green box shows the main hail area)
图 4 (a) 石家庄新乐的SA多普勒雷达1.5°仰角≥30 dBz的基本反射率演变(黑色方框内为双多普勒雷达反演区),(b)双多普勒雷达反演区(图a中方框)16时18—46分累计雨量和降雹分布
Figure 4. (a) Evolution of basic reflectivity (≥30 dBz) from observations of the SA Dopple radar deployed at Shijiazhuang Xinle with the elevation angle of 1.5° (the black box indicates Doppler radar retrieval region),(b) cumulative rainfall and hail distribution in the retrieval region during 16:18—16:46 BT
图 6 16时30分X=70处强度剖面与u-w风场垂直剖面(这是穿过主入流强中心的垂直剖面,仅在Y=90—120范围(白方框)内能反映该剖面上的近似气流分布,因为两边是弯曲气流,不是顺剖面流动的气流)
Figure 6. Vertical profiles of echo intensity and 3D wind field along X=70 at 16:30 BT (This figure shows the vertical cross section along the center of the main inflow,which approximately reflects airflow distributionalong this cross section within Y=90—120 range (white box); Note that both sides are curved airflows,not airflow along the cross section)
图 7 (a) 16时30分强度与风场6 km CAPPI叠加 (黑实线为X=70处剖面基线,黄色曲线为勾画的S形流场),(b)沿格点X=70剖面的水平风场与强度叠加垂直剖面 (O为悬挂回波,W为回波墙),(c) X=70处水平风场与垂直速度叠加垂直剖面 (白色曲线为0线)(b、c是穿过主入流的剖面,仅在Y=80—120范围 (白方框) 内能反映此剖面上的近似气流分布)
Figure 7. (a) Intensity and wind field at 6 km altitude CAPPI at 16:30 BT (the black solid line is the baseline of the cross section at X=70,and the yellow curve outlines the s-shaped flow field),(b) vertical cross section superimposed by horizontal wind fields and intensity along the cross section at grid point X=70 (O is suspension echo;W is echo wall),(c) vertical cross section superimposed by horizontal wind field and vertical velocity at X=70 (the white curve is zero velocity line)(b and c show the profiles crossing through the main inflow,which can only reflect approximate airflow distribution within Y= 80—120 range (white box))
图 8 (a)、(b) 为图7b、c中0速度线部分的截图,(c) 冰雹循环增长示意 (黑实曲线是水平速度“0”线,“0”线左右的背景水平风风向相反(空心绿箭头),带箭头的绿线是主上升气流轴,围绕“0”线的紫色曲线是大雹运行增长轨迹,顺轨迹运行线旁由小变大的紫色圆斑点示意冰雹是边运行边增长的)
Figure 8. (a),(b) are the screenshots of the 0 velocity line in Fig.7b,c,(c)schematic diagram of hail cycle growth (the black solid curve is the horizontal velocity "0" line,the horizontal wind direction is opposite around the "0" line (hollow green arrows), the green line with arrow is the main updraft axis,and the purple curve around the "0" line is the growth track of large hail. The purple dots along the track line that change from small to large indicate the hail is growing while moving)
-
戴建华,陶岚,丁杨等. 2012. 一次罕见飑前强降雹超级单体风暴特征分析. 气象学报,70(4):609-727 Dai J H,Tao L,Ding Y,et al. 2012. Case analysis of a large hail producing severe supercell ahead of a squall line. Acta Meteor Sinica,70(4):609-727 (in Chinese)
杜牧云,刘黎平,胡志群等. 2011. C波段双线偏振多普勒雷达资料质量分析. 暴雨灾害,30(4):328-334 DOI: 10.3969/j.issn.1004-9045.2011.04.007 Du M Y,Liu L P,Hu Z Q,et al. 2011. Data quality analysis of C-band dual linear polarimetric radar. Torrential Rain Disaster,30(4):328-334 (in Chinese) DOI: 10.3969/j.issn.1004-9045.2011.04.007
杜牧云,刘黎平,胡志群等. 2013. 双线偏振多普勒雷达资料质量分析. 气象学报,71(1):146-158 Du M Y,Liu L P,Hu Z Q,et al. 2013. An analysis of dual-linear polarimetric doppler radar data quality. Acta Meteor Sinica,71(1):146-158 (in Chinese)
范皓,杨永胜,段英等. 2019. 太行山东麓一次强对流冰雹云结构的观测分析. 气象学报,77(5):823-834 Fan H,Yang Y S,Duan Y,et al. 2019. An observational analysis of the cloud structure of a severe convective hailstorm over the eastern foothill of Taihang Mountain. Acta Meteor Sinica,77(5):823-834 (in Chinese)
胡志群,刘黎平,楚荣忠等. 2008. X波段双线偏振雷达不同衰减订正方法对比及其对降水估测影响研究. 气象学报,66(2):251-261 Hu Z Q,Liu L P,Chu R Z,et al. 2008. Comparison of different attenuation correction methods and their effects on estimated rainfall using X-band dual linear polarimetric radar. Acta Meteor Sinica,66(2):251-261 (in Chinese)
胡志群,刘黎平,吴林林. 2014. C波段偏振雷达几种系统误差标定方法对比分析. 高原气象,33(1):221-231 DOI: 10.7522/j.issn.1000-0534.2013.00134 Hu Z Q,Liu L P,Wu L L. 2014. Comparison among several system biases calibration methods on C-band polarimetric radar. Plateau Meteor,33(1):221-231 (in Chinese) DOI: 10.7522/j.issn.1000-0534.2013.00134
刘黎平. 2003. 用双多普勒雷达反演降水系统三维风场试验研究. 应用气象学报,14(4):502-504 DOI: 10.3969/j.issn.1001-7313.2003.04.016 Liu L P. 2003. Experimental study on three-dimensional wind field inversion of precipitation system by dual Doppler radar. J Appl Meteor Sci,14(4):502-504 (in Chinese) DOI: 10.3969/j.issn.1001-7313.2003.04.016
刘黎平,郑佳锋,阮征等. 2015. 2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果. 气象学报,73(4):635-647 Liu L P,Zheng J F,Ruan Z,et al. 2015. The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars. Acta Meteor Sinica,73(4):635-647 (in Chinese)
刘式适,付遵涛,刘式达等. 2004. 龙卷风的漏斗结构理论. 地球物理学报,47(6):959-963 DOI: 10.3321/j.issn:0001-5733.2004.06.004 Liu S S,Fu Z T,Liu S D,et al. 2004. A theory on the funnel structure of tornado. Chinese J Geophys,47(6):959-963 (in Chinese) DOI: 10.3321/j.issn:0001-5733.2004.06.004
罗琪,郑永光,陈敏. 2019. 2017年北京北部一次罕见强弓状飑线过程演变和机理. 气象学报,77(3):371-386 Luo Q,Zheng Y G,Chen M. 2019. Evolution and development mechanisms of a rare strong arc-shaped squall line that occurred in Northern Beijing in 2017. Acta Meteor Sinica,77(3):371-386 (in Chinese)
梅垚,胡志群,黄兴友等. 2018. 青藏高原对流云的偏振雷达观测研究. 气象学报,76(6):1014-1028 Mei Y,Hu Z Q,Huang X Y,et al. 2018. A study of convective clouds in the Tibetan Plateau based on dual polarimetric radar observa-tions. Acta Meteor Sinica,76(6):1014-1028 (in Chinese)
田利庆,许焕斌,王昂生. 2005. 雹云机理新见解的观测验证和复现. 高原气象,24(1):77-83 DOI: 10.3321/j.issn:1000-0534.2005.01.012 Tian L Q,Xu H B,Wang A S. 2005. Verification and reproduction of the new understanding for mechanism of hail cloud. Plateau Meteor,24(1):77-83 (in Chinese) DOI: 10.3321/j.issn:1000-0534.2005.01.012
徐芬,郑媛媛,肖卉等. 2016. 江苏沿江地区一次强冰雹天气的中尺度特征分析. 气象,42(5):567-577 DOI: 10.7519/j.issn.1000-0526.2016.05.006 Xu F,Zheng Y,Xiao H,et al. 2016. Mesoscale characteristics of a severe hail event over the area along Yangtze River in Jiangsu. Meteor Mon,42(5):567-577 (in Chinese) DOI: 10.7519/j.issn.1000-0526.2016.05.006
许焕斌,段英. 1999. 云粒子谱演化研究中的一些问题. 气象学报,57(4):450-460 Xu H B,Duan Y. 1999. Some questions in studying the evolution of size-distribution spectaum of hydrometeor particles. Acta Meteor Sinica,57(4):450-460 (in Chinese)
许焕斌,段英,吴志会. 2000. 防雹现状回顾和新防雹概念模型. 气象科技,28(4):1-12 DOI: 10.3969/j.issn.1671-6345.2000.04.001 Xu H B,Duan Y,Wu Z H. 2000. Review of hail suppression status and new hail suppression conceptual model. Meteor Sci Technol,28(4):1-12 (in Chinese) DOI: 10.3969/j.issn.1671-6345.2000.04.001
许焕斌,段英. 2001. 冰雹形成机制的研究并论人工雹胚与自然雹胚的“利益竞争”防雹假说. 大气科学,25(2):277-288 DOI: 10.3878/j.issn.1006-9895.2001.02.14 Xu H B,Duan Y. 2001. The mechanism of hailstone's formation and the hail-suppression hypothesis:"Beneficial Competition". Chinese J Atmos Sci,25(2):277-288 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2001.02.14
许焕斌,段英. 2002. 强对流(冰雹)云中水凝物的积累和云水的消耗. 气象学报,60(5):575-584 Xu H B,Duan Y. 2002. The accumulation of hydrometeor and depletion of cloud water in strongly convective cloud (hailstorm). Acta Meteor Sinica,60(5):575-584 (in Chinese)
许焕斌,田利庆,段英. 2005. 关于积云增雨和实施方案的探讨. 气象科技,33(S1):1-6 Xu H B,Tian L Q,Duan Y. 2005. Cumulus cloud rain enhancement and design of operation scheme. Meteor Sci Technol,33(S1):1-6 (in Chinese)
许焕斌,田利庆. 2008. 强对流云中“穴道”的物理含义和应用. 应用气象学报,19(3):372-379 DOI: 10.3969/j.issn.1001-7313.2008.03.015 Xu H B,Tian L Q. 2008. Physical meanings of "Cave Channel" in strong convective storm with its application. J Appl Meteor Sci,19(3):372-379 (in Chinese) DOI: 10.3969/j.issn.1001-7313.2008.03.015
许焕斌. 2012. 强对流云物理及其应用. 北京: 气象出版社, 4-53. Xu H B. 2012. The Physics of Severe Convective Storms and Its Application. Beijing: China Meteorological Press, 4-53 (in Chinese)
许焕斌. 2015. 人工影响天气科学技术问答: 探索理论通往应用之路. 北京: 气象出版社, 18-19. Xu H B. 2015. Questions and Answers about Science and Technology in Weather Modification. Beijing: China Meteorological Press, 18-19 (in Chinese)
俞小鼎,郑媛媛,廖玉芳等. 2008. 一次伴随强烈龙卷的强降水超级单体风暴研究. 大气科学,32(3):508-522 DOI: 10.3878/j.issn.1006-9895.2008.03.08 Yu X D,Zheng Y Y,Liao Y F,et al. 2008. Observational investigation of a tornadic heavy precipitation supercell storm. Chinese J Atmos Sci,32(3):508-522 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2008.03.08
俞小鼎,周小刚,王秀明. 2012. 雷暴与强对流临近天气预报技术进展. 气象学报,70(3):311-337 Yu X D,Zhou X G,Wang X M. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica,70(3):311-337 (in Chinese)
张沛源,周海光,胡绍萍. 2002. 双多普勒天气雷达风场探测的可靠性研究. 应用气象学报,13(4):485-496 DOI: 10.3969/j.issn.1001-7313.2002.04.012 Zhang P Y,Zhou H G,Hu S P. 2002. Reliability study of determining wind with dual-Doppler radars. J Appl Meteor Sci,13(4):485-496 (in Chinese) DOI: 10.3969/j.issn.1001-7313.2002.04.012
郑媛媛,俞小鼎,方翀等. 2004. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报,62(3):317-328 Zheng Y Y,Yu X D,Fang C,et al. 2004. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica,62(3):317-328 (in Chinese)
周海光,王玉彬. 2002a. 多部多普勒雷达同步探测三维风场反演系统. 气象,28(9):7-11 Zhou H G,Wang Y B. 2002a. A retrieving system of three-dimensional wind fields by multiple-Doppler Radar. Meteor Mon,28(9):7-11 (in Chinese)
周海光,张沛源. 2002b. 笛卡儿坐标系的双多普勒天气雷达三维风场反演技术. 气象学报,60(5):585-593 Zhou H G,Zhang P Y. 2002b. A new technique of recovering three-dimensional wind fields from simulated dual-Doppler radar data in the Cartesian Space. Acta Meteor Sinica,60(5):585-593 (in Chinese)
周海光,张沛源. 2005. 一次局地大暴雨三维风场的双多普勒雷达探测研究. 大气科学,29(3):372-386 DOI: 10.3878/j.issn.1006-9895.2005.03.05 Zhou H G,Zhang P Y. 2005. A study of the 3D wind of heavy rain with dual-Doppler radar. Chinese J Atmos Sci,29(3):372-386 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2005.03.05
Browning K A,Foote G B. 1976. Airflow and hail growth in supercell storms and some implications for hail suppression. Quart J Roy Meteor Soc,102(433):499-533 DOI: 10.1002/qj.49710243303
Foote G B,Wade C G. 1982. Case study of a hailstorm in Colorado. Part Ⅰ:Radar echo structure and evolution. J Atmos Sci,39(12):2828-2846 DOI: 10.1175/1520-0469(1982)039<2828:CSOAHI>2.0.CO;2
Foote G B,Frank H W. 1983. Case study of a hailstorm in Colorado. Part Ⅲ:Airflow from triple-Doppler measurements. J Atmos Sci,40(3):686-707 DOI: 10.1175/1520-0469(1983)040<0686:CSOAHI>2.0.CO;2
Kang F Q,Zhang Q,Lu S H,et al. 2007. Validation and development of a new hailstone formation theory:Numerical simulations of a strong hailstorm occurring over the Qinghai-Tibetan plateau. J Geophys Res Atmos,112(D2):D02207
Miller L J,Tuttle J D,Foote G B. 1990. Precipitation production in a large Montana hailstorm:Airflow and particle growth trajectories. J Atmos Sci,47(13):1619-1646 DOI: 10.1175/1520-0469(1990)047<1619:PPIALM>2.0.CO;2