Quantitative precipitation estimation algorithm for C-band radar situated in complex topographical regions
-
摘要: C波段雷达定量降水估计(QPE)精度受到很多因素的影响,主要包括:(1)雷达标定,(2)非气象回波的干扰,(3)降水物垂直空间变化,(4)地形或地物的严重遮挡,(5)Z-R关系的代表性,(6)雷达拼图的质量,(7)雷达观测回波衰减等。文中雷达定量降水估计算法基于陕西省C波段天气雷达展开,从雷达探测数据质量控制、地形遮挡、Z-R关系和雷达拼图等方面提高C波段天气雷达定量降水估计的精度,产生降水类型产品和1 h定量降水估计产品,产品空间分辨率为0.01°×0.01°,时间分辨率为6 min。通过对7次降水过程进行评估,结果表明:基于混合仰角反射率因子处理模块和降水类型分类模块进行雷达定量降水估计,得到的结果与地面雨量站观测降水接近,1 h累计降水量的统计评分指标均方根误差稳定在3 mm以下,相对误差稳定在50%左右,相对偏差保持在−30%以内,雷达定量降水估计产品的离散度和绝对偏差都较低,表明该算法得到的雷达定量降水估计稳定可靠。Abstract: The accuracy of C-band radar quantitative precipitation estimation (QPE) is affected by many factors, including the following: (1) Calibration of radar observations, (2) interference from non-meteorological echoes, (3) vertical spatial variation of precipitation, (4) severe radar beam blockage by terrain or ground objects, (5) Z-R relationship, (6) multi-radar mosaic method, (7) radar observation echo attenuation, etc. In this paper, the radar quantitative precipitation estimation is conducted based on the C-band weather radar in Shaanxi Province. It improves the accuracy of the C-band weather radar QPE from the aspects of radar quality control, terrain blockage, Z-R relationship and multi-radar mosaic, and produces precipitation type and 1 h QPE products. The spatial and temporal resolutions of the product are 0.01°×0.01° and 6 min, respectively. Through the evaluation of seven precipitation processes, the results show that radar QPE based on hybrid scan reflectivity processing module and precipitation type classification module is close to the precipitation observed by the ground gauge stations. The statistical indicators RMSE of hourly precipitation is stable and below 3 mm, RMAE is about 50% and remains stable, and RMB remains within −30%. The dispersion and absolute deviation of radar QPE products are both low, indicating the radar QPE obtained by this algorithm is stable and reliable.
-
-
图 6 Ku波段和C波段在雨区对降水粒子的反射特性 (a.
μ 取−1—4时DFR随D0 取值不同的变化;b. DFR随Ku波段降水粒子反射率不同产生的变化,黑色实线代表不同滴谱参数取平均后的结果,误差棒表示标准差;c. Ku波段和C波段反射率的散点分布)Figure 6. Comparison of Ku-band and C-band reflection characteristics of precipitation particles in rainy areas (a) The change of DFR with the value of when μ is from −1 to 4;(b) the relationship of DFR with different reflectivity of precipitation particles in Ku-band,the black solid line represents the relationship with average of different drop spectrum parameters,error bars indicate standard deviation;and (c) scatter plot of reflectivity of Ku-band and C-band radar
图 7 不同降水类型中C波段雷达降水反演的Z-R关系 (适用于液态降水)(a. 0℃层亮带层状云降水,b. 非 0℃层亮带层状云降水,c. 对流性降水;黑色实线为拟合线)
Figure 7. The Z-R relationship of C-band radar precipitation for different precipitation types (applicable to liquid precipitation)(a. bright band,b. stratiform,and c. convective;The black solid line is the fitted line)
表 1 2019年陕西7次降水个例
Table 1 The 7 precipitation cases in Shaanxi in 2019
个例 日期-时间 个例介绍 1 04-07 14:00—04-09 04:00 降水主要集中在陕西北部及南部地区,其中南部地区主要为对流性降水 2 04-26 01:00—04-28 09:00 飑线过程,自西北向东南移动,逐渐减弱成团状对流系统,降水主要集中在陕西中部及南部地区 3 05-05 15:00—05-08 22:00 降水主要集中在陕西中部及南部地区,其中中部地区有对流性降水过程 4 05-26 14:00—05-29 02:00 降水主要集中在陕西中部及南部地区,有对流性降水过程 5 06-26 14:00—06-28 14:00 全省范围内均有降水,其中南部地区主要为对流性降水 6 07-20 14:00—07-23 01:00 降水主要集中在陕西北部、中部和西南部地区,为对流性降水 7 07-28 14:00—07-31 08:00 全省范围内均有降水,其中北部和南部地区主要为对流性降水 总计 406 h 7次个例 -
高晓荣,梁建茵,李春晖. 2012. 雷达定量降水估计技术及效果评估. 热带气象学报,28(1):77-88 DOI: 10.3969/j.issn.1004-4965.2012.01.009 Gao X R,Liang J Y,Li C H. 2012. Radar quantitative precipitation estimation techniques and effect evaluation. J Trop Meteor,28(1):77-88 (in Chinese) DOI: 10.3969/j.issn.1004-4965.2012.01.009
高晓荣,梁建茵,李春晖等. 2013. 多平台(雷达、卫星、雨量计)降水信息的融合技术初探. 高原气象,32(2):549-555 Gao X R,Liang J Y,Li C H,et al. 2013. Preliminary studies on merged techniques based on precipitation information from multiplatform (radar,satellite and rain gauge). Plateau Meteor,32(2):549-555 (in Chinese)
江源. 2013. 天气雷达观测资料质量控制方法研究及其应用[D]. 北京: 中国气象科学研究院. Jiang Y. 2013. Meteorological radar data quality control study and application[D]. Beijing: Chinese Academy of Meteorological Sciences(in Chinese)
刘黎平,吴林林,杨引明. 2007. 基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析. 气象学报,65(2):252-260 Liu L P,Wu L L,Yang Y M. 2007. Development of fuzzy-logical two-step ground clutter detection algorithm. Acta Meteor Sinica,65(2):252-260 (in Chinese)
沈艳,潘旸,徐宾等. 2012. 最优插值法在对中国自动站降水量空间分析中的参数优化. 成都信息工程学院学报,27(2):219-224 Shen Y,Pan Y,Xu B,et al. 2012. Parameter improvements of hourly automatic weather stations precipitation analysis by optimal interpolation over China. J Chengdu Univ Inf Technol,27(2):219-224 (in Chinese)
王红艳,刘黎平,王改利等. 2009. 多普勒天气雷达三维数字组网系统开发及应用. 应用气象学报,20(2):214-224 DOI: 10.3969/j.issn.1001-7313.2009.02.011 Wang H Y,Liu L P,Wang G L,et al. 2009. Development and application of the doppler weather radar 3-D digital mosaic system. J Appl Meteor Sci,20(2):214-224 (in Chinese) DOI: 10.3969/j.issn.1001-7313.2009.02.011
肖艳姣,刘黎平,杨洪平. 2008. 基于天气雷达网三维拼图的混合反射率因子生成技术. 气象学报,66(3):470-473 Xiao Y J,Liu L P,Yang H P. 2008. Technique for generating hybrid reflectivity field based on 3-D mosaicked reflectivity of weather radar network. Acta Meteor Sinica,66(3):470-473 (in Chinese)
肖艳姣,万玉发,王珏等. 2011. 改进的C波段天气雷达定量降水估计算法研究. 暴雨灾害,30(4):321-327 Xiao Y J,Wan Y F,Wang J,et al. 2011. Study of an improved Modified C-band radar quantitative precipitation estimation algorithm. Torrential Rain Disaster,30(4):321-327 (in Chinese)
张培昌, 杜秉玉, 戴铁丕. 2001. 雷达气象学. 北京: 气象出版社, 177-187. Zhang P C, Du B Y, Dai T P. 2001. Radar Meteorology. Beijing: China Meteorological Press, 177-187(in Chinese)
Balakrishnan N,Zrnić D S,Goldhirsh J,et al. 1989. Comparison of simulated rain rates from disdrometer data employing polarimetric radar algorithms. J Atmos Ocean Technol,6(3):476-486 DOI: 10.1175/1520-0426(1989)006<0476:COSRRF>2.0.CO;2
Fulton R A,Breidenbach J P,Seo D J,et al. 1998. The WSR-88D rainfall algorithm. Wea Forecasting,13(2):377-395 DOI: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
Kessinger C, Ellis S, Van Andel J, et al. 2003. The AP clutter mitigation scheme for the WSR-88D∥Preprints, 31st Conf. on Radar Meteorology. Seattle Washington: Amer Meteor Soc, 526-529
Langston C,Zhang J,Howard K. 2007. Four-dimensional dynamic radar mosaic. J Atmos Ocean Technol,24(5):776-790 DOI: 10.1175/JTECH2001.1
Lee G W,Zawadzki I. 2006. Radar calibration by gage,disdrometer,and polarimetry:Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J Hydrol,328(1-2):83-97 DOI: 10.1016/j.jhydrol.2005.11.046
Mishchenko M I,Travis L D,Mackowski D W. 1996. T-matrix computations of light scattering by nonspherical particles:A review. J Quant Spectrosc Radiat Transf,55(5):535-575 DOI: 10.1016/0022-4073(96)00002-7
Mishchenko M I. 2000. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl Opt,39(6):1026-1031 DOI: 10.1364/AO.39.001026
Morrissey M L,Maliekal J A,Greene J S,et al. 1995. The uncertainty of simple spatial averages using rain gauge networks. Water Resour Res,31(8):2011-2017 DOI: 10.1029/95WR01232
Mueller E A. 1977. Statistics of high radar reflectivity gradients. J Appl Meteor,16(5):511-513 DOI: 10.1175/1520-0450(1977)016<0511:SOHRRG>2.0.CO;2
Qi Y C,Zhang J,Cao Q,et al. 2013a. Correction of radar QPE errors for nonuniform VPRs in mesoscale convective systems using TRMM observations. J Hydrometeorol,14(5):1672-1682 DOI: 10.1175/JHM-D-12-0165.1
Qi Y C,Zhang J,Zhang P F. 2013b. A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Quart J Roy Meteor Soc,139(677):2233-2240 DOI: 10.1002/qj.2095
Qi Y C,Zhang J. 2017. A physically based two-dimensional seamless reflectivity mosaic for radar QPE in the MRMS system. J Hydrometeorol,18(5):1327-1340 DOI: 10.1175/JHM-D-16-0197.1
Rosenfeld D, Ulbrich C W. 2003. Cloud microphysical properties, processes, and rainfall estimation opportunities∥Wakimoto R W, Srivastava R. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Boston, MA: American Meteorological Society, 237-258
Smith P L. 1990. Precipitation measurement and hydrology: Panel Report∥Atlas D. Radar in Meteorology. Boston, MA: American Meteorological Society, 607-618
Smith P L. 1998. On the minimum useful elevation angle for weather surveillance radar scans. J Atmos Ocean Technol,15(3):841-843 DOI: 10.1175/1520-0426(1998)015<0841:OTMUEA>2.0.CO;2
Tabary P. 2007. The New French operational radar rainfall product. Part Ⅰ:Methodology. Wea Forecasting,22(3):393-408 DOI: 10.1175/WAF1004.1
Villarini G,Krajewski W F. 2008. Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv Water Resour,31(7):1015-1023 DOI: 10.1016/j.advwatres.2008.04.007
Zhang G,Vivekanandan J,Brandes E. 2001. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens,39(4):830-841 DOI: 10.1109/36.917906
Zhang J,Howard K,Gourley J J. 2005. Constructing three-dimensional multiple-radar reflectivity mosaics:Examples of convective storms and stratiform rain echoes. J Atmos Ocean Technol,22(1):30-42 DOI: 10.1175/JTECH-1689.1
Zhang J,Qi Y C. 2010. A real-time algorithm for the correction of brightband effects in radar-derived QPE. J Hydrometeorol,11(5):1157-1171 DOI: 10.1175/2010JHM1201.1
Zhang J,Howard K,Langston C,et al. 2011. National mosaic and multi-sensor QPE (NMQ) system:Description,results,and future plans. Bull Amer Meteor Soc,92(10):1321-1338 DOI: 10.1175/2011BAMS-D-11-00047.1
Zhang J,Howard K,Langston C,et al. 2016. Multi-radar multi-sensor(MRMS)quantitative precipitation estimation:Initial operating capabilities. Bull Amer Meteor Soc,97(4):621-638 DOI: 10.1175/BAMS-D-14-00174.1
Zhang Z,Qi Y C,Li D H,et al. 2021. A real-time algorithm to identify convective precipitation adjacent to or within bright band in the radar scan domain. J Hydrometeorol,22(5):1139-1151 DOI: 10.1175/JHM-D-20-0005.1
Zhu Z W,Qi Y C,Cao Q,et al. 2020a. Particle size distribution characteristics within different regions of mature squall-line based on the analysis of global precipitation measurement dual-frequency precipitation radar retrieval. IEEE Geosci Remote Sens Lett, DOI: 10.1109/LGRS.2020.3019384
Zhu Z W,Qi Y C,Cao Q,et al. 2020b. Conversion of the vertical profile of reflectivity from Ku-band to C-band based on the drop size distribution measurements of the global precipitation measurement mission dual-frequency precipitation radar. IEEE Trans Geosci Remote Sens, DOI: 10.1109/TGRS.2020.3025803
-
期刊类型引用(8)
1. 李巧,戚友存,张哲,杨毅,朱自伟,王楠,胡启元. 基于贝叶斯分类器和回波物理特征的C波段雷达非气象回波识别方法和性能分析. 大气科学. 2024(03): 823-836 . 百度学术
2. 唐佳佳,潘臻,唐晓文,张优君,万夫敬. 天气雷达定量降水估测订正优化算法. 气象科技. 2024(05): 619-629 . 百度学术
3. 汪冬冬,吴福浪,陈生,沃伟峰,钱燕珍,李云. 宁波和舟山双偏振雷达对估测台风降水的对比评估. 水利水电技术(中英文). 2024(10): 38-52 . 百度学术
4. 白水成,高山,刘畅,任丹阳,李军,曹梅,张颖梅,樊婷丽. 陕西天气雷达覆盖率评估与分析. 气象. 2023(04): 478-486 . 百度学术
5. 张哲,戚友存,兰红平,朱自伟,曾庆锋,罗鸣,刘爱明,宗蓉. 深圳S波段双偏振和X波段双偏振相控阵雷达定量降水估测组网拼图系统介绍. 气象学报. 2023(03): 506-519 . 本站查看
6. 刘娜,黄武斌,杨建才,王基鑫,王一丞,张君霞. 基于SCTP-RF算法的甘肃省短期定量降水客观预报方法研究. 干旱气象. 2022(01): 146-155 . 百度学术
7. 李梦迪,戚友存,张哲,管晓丹. 基于雷达—雨量计降水融合方法提高极端降水监测能力. 大气科学. 2022(06): 1523-1542 . 百度学术
8. 李超,隆霄,曹怡清,王思懿,韩子霏,王晖. 贺兰山东麓20次暴雨过程环流形势及低空急流特征. 干旱区研究. 2022(06): 1753-1767 . 百度学术
其他类型引用(5)