Climate change impact on the region suitable for Coffea arabica growth in Yunnan province
-
摘要: 为揭示气候变化对云南省小粒咖啡适生区的影响,基于最大熵(MaxEnt)模型,结合小粒咖啡物种分布数据、环境变量数据,构建云南省小粒咖啡适生区评估及预测模型,对当前气候条件下小粒咖啡在云南省的适生区进行评估,并对未来气候条件下,小粒咖啡在云南省的适生区进行预测,再对预测结果进行对比分析。结果显示:(1)构建的最大熵模型能够较精确地用于小粒咖啡在云南省适生区的评估和预测,当前气候条件下,评估模型的训练集与测试集的AUC (Area under ROC Curve)值均为0.941,达到评估结果为极好的标准。(2)影响云南省小粒咖啡种植的主导环境因子依次为11月平均最高气温、7月降雨量、海拔高度、2月平均最低气温、10月降雨量、坡度和最冷月最低气温,共占总贡献率的91.4%。(3)当前气候条件下,小粒咖啡的适生区主要分布在滇西、滇西南以及滇南的保山、德宏、普洱、临沧、西双版纳等地区,总适生区约为116300 km2,占云南省国土面积的29.51%,且总体上,高适生区外围分布中适生区,中适生区外围分布低适生区。RCP4.5、RCP8.5情景下,小粒咖啡总适生区的面积分别约为98300、69700 km2,分别占云南省国土面积的24.95%、17.69%,两种排放情景下小粒咖啡总适生区面积分别减少了18000、46600 km2,国土面积占比分别减少了4.56%、11.82%,且总适生区的质心均由东南向西北方向移动,与RCP4.5情景相比,RCP8.5情景的移动距离更远。(4)未来气候变化将会导致小粒咖啡在云南省的总适生区面积减小,总适生区的质心位置向海拔更高与纬度更高的方向移动,且高碳排放情景下这种变化幅度更大。Abstract: In order to reveal the climate change impact on the region suitable for Coffea arabica growth in Yunnan province, based on the Maximum entropy (MaxEnt) model combined with the species distribution data and environmental variable data of Coffea arabica, an assessment and prediction model is constructed to evaluate the region suitable for Coffea arabica growth in Yunnan province under current climatic condition and predict the distribution of regions suitable for Coffea arabica growth under future climate condition. The prediction is analyzed. The results are as follows. (1) The constructed MaxEnt model can be used for the assessment and prediction of regions suitable for Coffea arabica growth in Yunnan province. Under current climate condition, the AUC (Area under ROC Curve) values of the training set and the test set of the evaluation model both are 0.941, and the evaluation result meets the standard of "Excellence". (2) The dominant environmental factors affecting the cultivation of Coffea arabica in Yunnan province are the average maximum temperature in November, rainfall in July, altitude, average minimum temperature in February, rainfall in October, mountain slope, and minimum temperature in the coldest month. The contribution rate is 91.4%. (3) Under current climatic condition, the regions suitable for Coffea arabica growth are mainly distributed in western Yunnan, southwestern Yunnan and Baoshan, Dehong, Pu'er, Lincang, Xishuangbanna and other areas in southern Yunnan. The total size of areas suitable for Coffea arabica growth is about 116300 km2, which accounts for 29.51% of the land area in Yunnan. In general, there are moderately suitable areas around the periphery of highly suitable regions, and less suitable areas are distributed around the periphery of moderately suitable areas. Under the RCP4.5 and RCP8.5 scenarios, the total areas suitable for Coffea arabica growth are about 98300 km2 and 69700 km2, accounting for 24.95% and 17.69% of the land area of Yunnan province, respectively. The areas of suitable regions would decrease by 18000 km2 and 46600 km2, and their proportions of land area would decrease by 4.56% and 11.82%, respectively. The center of the overall suitable region would migrate from southeast to northwest. Compared with that under the RCP4.5 scenario, the migration under the RCP8.5 scenario extends further northwest. (4) Future climate change will lead to decreases in the total area suitable for Coffea arabica growth in Yunnan province. The center of the overall suitable region would shift to higher altitudes and higher latitudes, and the magnitude of such changes is larger under higher carbon emission scenarios.
-
Keywords:
- Maximum entropy model /
- Climate change /
- Suitable growth zone /
- Coffea arabica /
- Yunnan
-
-
表 1 筛选出的关键环境变量
Table 1 Selected key environmental variables
序号 变量类型 变量代码 描述 序号 变量类型 变量代码 描述 1 气候 bio_01 年平均气温(℃) 10 气候 tmax_11 11月平均最高气温(℃) 2 气候 bio_02 气温日较差月均值(℃) 11 气候 tmin_02 2月平均最低气温(℃) 3 气候 bio_06 最冷月最低气温(℃) 12 地形 alt 海拔高度(m) 4 气候 prec_03 3月降雨量(mm) 13 地形 aspect 坡向(°) 5 气候 prec_07 7月降雨量(mm) 14 地形 slope 坡度(°) 6 气候 prec_10 10月降雨量(mm) 15 土壤 t_gravel 土壤碎石体积百分比(%) 7 气候 prec_11 11月降雨量(mm) 16 土壤 t_oc 土壤有机碳含量(g/kg) 8 气候 prec_12 12月降雨量(mm) 17 土壤 t_PH_H2O 土壤酸碱度 9 气候 tmax_03 3月平均最高气温(℃) 表 2 关键环境变量的贡献率
Table 2 Contribution rates of key environmental variables
序号 环境变量 贡献百分率(%) 变量类型 序号 环境变量 贡献百分率(%) 变量类型 1 11月平均最高气温 38.8 主导型 10 3月降雨量 1.1 辅助型 2 7月降雨量 15.8 主导型 11 3月平均最高气温 0.9 辅助型 3 海拔高度 12.6 主导型 12 坡向 0.5 辅助型 4 2月平均最低气温 7.1 主导型 13 气温日较差月均值 0.4 辅助型 5 10月降雨量 5.9 主导型 14 土壤碎石体积百分比 0.4 辅助型 6 最冷月最低气温 5.6 主导型 15 土壤有机碳含量 0.3 辅助型 7 坡度 5.6 主导型 16 土壤酸碱度 0.3 辅助型 8 年平均气温 2.6 辅助型 17 11月降雨量 0.1 辅助型 9 12月降雨量 2 辅助型 表 3 云南小粒咖啡适生区在当前、未来气候条件下的面积评估及预测
Table 3 Assessment and prediction of regions suitable for Coffea arabica growth under current and future climate conditions
当前气候条件 RCP4.5气候模式下 RCP8.5气候模式下 评估面积(104 km2) 全省面积占比 预测面积(104 km2) 全省面积占比 预测面积(104 km2) 全省面积占比 非适生区 27.78 70.49% 29.58 75.05% 32.44 82.31% 低适生区 4.71 11.95% 7.25 18.40% 5.41 13.73% 中适生区 5.34 13.55% 2.54 6.45% 1.53 3.88% 高适生区 1.58 4.01% 0.04 0.10% 0.03 0.08% 总适生区 11.63 29.51% 9.83 24.95% 6.97 17.69% -
陈积山,刘杰淋,朱瑞芬等. 2019. 基于MaxEnt分析我国羊草分布区的生物气候特征. 草地学报,27(1):35-42 Chen J S,Liu J L,Zhu R F,et al. 2019. Analysis of suitable bioclimatic characteristics of Leymus chinensis using Maxent model. Acta Agrestia Sinica,27(1):35-42 (in Chinese)
陈凯. 2019. 气候因子对小粒咖啡品质的影响. 保山学院学报,38(2):40-46 DOI: 10.3969/j.issn.1674-9340.2019.02.011 Chen K. 2019. Effect of climate factors on the quality of Coffea arabica L. J Baoshan Univ,38(2):40-46 (in Chinese) DOI: 10.3969/j.issn.1674-9340.2019.02.011
丁新华,李超,王小武等. 2019. 稻水象甲在新疆的潜在分布及适生性研究. 生物安全学报,28(2):116-120 DOI: 10.3969/j.issn.2095-1787.2019.02.007 Ding X H,Li C,Wang X W,et al. 2019. Potential distribution and adaptability of the rice water weevil (Lisorhoptrus oryzophilus) in Xinjiang. J Biosafety,28(2):116-120 (in Chinese) DOI: 10.3969/j.issn.2095-1787.2019.02.007
杜超群,王起富,曾勇等. 2019. 湖北省杉木栽培区划及气候特征研究. 中南林业科技大学学报,39(4):5-10 Du C Q,Wang Q F,Zeng Y,et al. 2019. Study on cultivation regionalization and climate features of Cunninghamia lanceolata in Hubei province. J Cen South Univ For Technol,39(4):5-10 (in Chinese)
韩志慧,郝琨,刘小刚等. 2019. 荫蔽栽培与亏缺灌溉对干热区小粒咖啡生长和冠层结构的影响. 中国生态农业学报(中英文),27(10):1537-1545 Han Z H,Hao K,Liu X G,et al. 2019. Effects of shade cultivation and deficit irrigation on the growth and canopy structure of Coffea arabica L. in dry-hot region. Chinese J Eco-Agric,27(10):1537-1545 (in Chinese)
黄丕兴. 2019. 小粒种咖啡品质的影响因素及咖啡质量控制技术探讨. 农业与技术,39(20):119-120 Huang P X. 2019. Discussion on influencing factors and quality control technology of Coffea arabica. Agric Technol,39(20):119-120 (in Chinese)
姬柳婷,郑天义,陈倩等. 2020. 北重楼潜在适生区对气候变化的响应及其主导气候因子. 应用生态学报,31(1):89-96 Ji L T,Zheng T Y,Chen Q,et al. 2020. Responses of potential suitable area of Paris verticillata to climate change and its dominant climate factors. Chinese J Appl Ecol,31(1):89-96 (in Chinese)
李文庆,徐洲锋,史鸣明等. 2019. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测. 生态学报,39(9):3224-3234 Li W Q,Xu Z F,Shi M M,et al. 2019. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios. Acta Ecol Sinica,39(9):3224-3234 (in Chinese)
李垚,张兴旺,方炎明. 2014. 气候变暖对中国栓皮栎地理分布格局影响的预测. 应用生态学报,25(12):3381-3389 Li Y,Zhang X W,Fang Y M. 2014. Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China. Chinese J Appl Ecol,25(12):3381-3389 (in Chinese)
林正雨,陈强,邓良基等. 2019. 基于MaxEnt和MCR的四川省柑橘生产布局模拟. 中国农业资源与区划,40(9):64-74 Lin Z Y,Chen Q,Deng L J,et al. 2019. Simulation of citrus production layout in Sichuan province based on MaxEnt and MCR. Chinese J Agric Res Reg Plan,40(9):64-74 (in Chinese)
鲁韦坤,李湘,李蒙等. 2019. 地理因子对云南咖啡生豆品质的影响研究. 热带农业科学,39(2):13-19 Lu W K,Li X,Li M,et al. 2019. Effects of geographical factors on the quality of coffee beans produced in Yunnan. Chinese J Trop Agric,39(2):13-19 (in Chinese)
马关润,刘汗青,田素梅等. 2019. 云南咖啡种植区土壤养分状况及影响咖啡生豆品质的主要因素. 植物营养与肥料学报,25(7):1222-1229 DOI: 10.11674/zwyf.18333 Ma G R,Liu H Q,Tian S M,et al. 2019. Soil nutrient status in coffee plantation of Yunnan and the main factors related to quality of green coffee beans. J Plant Nutr Fert,25(7):1222-1229 (in Chinese) DOI: 10.11674/zwyf.18333
沈涛,虞泓,王元忠. 2019. 滇龙胆草野生资源的地理分布与生物气候特征. 应用生态学报,30(7):2291-2300 Shen T,Yu H,Wang Y Z. 2019. Geographical distribution and bioclimatic characteristics of the wild Gentiana rigescens resources. Chinese J Appl Ecol,30(7):2291-2300 (in Chinese)
孙彩梅,罗吉,王琨等. 2019. 云南不同产地及品种小粒种咖啡豆化学及卫生指标比较. 西南农业学报,32(11):2550-2556 Sun C M,Luo J,Wang K,et al. 2019. Comparison of chemical and health indexes of Coffea arabica bean from different producing areas and varieties in Yunnan. Southwest China J Agric Sci,32(11):2550-2556 (in Chinese)
谭钰凡,左小清. 2018. 基于GIS与Maxent模型的金花茶潜在适生区与保护研究. 热带亚热带植物学报,26(1):24-32 DOI: 10.11926/jtsb.3796 Tan Y F,Zuo X Q. 2018. Studies on potential suitable growth areas and protection of Camellia nitidissima based on GIS and Maxent model. J Trop Subtrop Bot,26(1):24-32 (in Chinese) DOI: 10.11926/jtsb.3796
王茹琳,李庆,封传红等. 2017. 基于MaxEnt的西藏飞蝗在中国的适生区预测. 生态学报,37(24):8556-8566 Wang R L,Li Q,Feng C H,et al. 2017. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecol Sinica,37(24):8556-8566 (in Chinese)
王彦兵,王晓媛,肖兵等. 2020. 小粒咖啡果皮总黄酮提取工艺优化及其体外抗氧化活性分析. 南方农业学报,51(2):385-393 DOI: 10.3969/j.issn.2095-1191.2020.02.019 Wang Y B,Wang X Y,Xiao B,et al. 2020. Optimization of extracting total flavonoids from Coffea arabica peel and its antioxidant activity in vitro. J South Agric,51(2):385-393 (in Chinese) DOI: 10.3969/j.issn.2095-1191.2020.02.019
王雨生,王召海,邢汉发等. 2019. 基于MaxEnt模型的珙桐在中国潜在适生区预测. 生态学杂志,38(4):1230-1237 Wang Y S,Wang Z H,Xing H F,et al. 2019. Prediction of potential suitable distribution of Davidia involucrata Baill in China based on MaxEnt. Chinese J Ecol,38(4):1230-1237 (in Chinese)
严中伟,丁一汇,翟盘茂等. 2020. 近百年中国气候变暖趋势之再评估. 气象学报,78(3):370-378 Yan Z W,Ding Y H,Zhai P M,et al. 2020. Re-assessing climatic warming in China since the last century. Acta Meteor Sinica,78(3):370-378 (in Chinese)
叶永昌,周广胜,殷晓洁. 2016. 1961—2010年内蒙古草原植被分布和生产力变化—基于MaxEnt模型和综合模型的模拟分析. 生态学报,36(15):4718-4728 Ye Y C,Zhou G S,Yin X J. 2016. Changes in distribution and productivity of steppe vegetation in Inner Mongolia during 1961 to 2010:Analysis based on MaxEnt model and synthetic model. Acta Ecol Sinica,36(15):4718-4728 (in Chinese)
张丹华,胡远满,刘淼. 2019. 基于Maxent生态位模型的互花米草在我国沿海的潜在分布. 应用生态学报,30(7):2329-2337 Zhang D H,Hu Y M,Liu M. 2019. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model. Chinese J Appl Ecol,30(7):2329-2337 (in Chinese)
张明达,王睿芳,李艺等. 2020. 云南省小粒咖啡种植生态适宜性区划. 中国生态农业学报(中英文),28(2):168-178 Zhang M D,Wang R F,Li Y,et al. 2020. Ecological suitability zoning of Coffea arabica L. in Yunnan province. Chinese J Eco-Agric,28(2):168-178 (in Chinese)
张强,韩兰英,郝晓翠等. 2015. 气候变化对中国农业旱灾损失率的影响及其南北区域差异性. 气象学报,73(6):1092-1103 Zhang Q,Han L Y,Hao X C,et al. 2015. On the impact of the climate change on the Agricultural disaster loss caused by drought in China and the regional differences between the North and the South. Acta Meteor Sinica,73(6):1092-1103 (in Chinese)
张文慧,刘小刚,王露等. 2019. 不同遮光和施氮水平对小粒咖啡生长和光合特性的影响. 华南农业大学学报,40(1):32-39 DOI: 10.7671/j.issn.1001-411X.201805002 Zhang W H,Liu X G,Wang L,et al. 2019. Effects of shading and nitrogen application levels on growth and photosynthesis characteristics of Coffea arabica. J South China Agric Univ,40(1):32-39 (in Chinese) DOI: 10.7671/j.issn.1001-411X.201805002
张文秀,寇一翾,张丽等. 2020. 采用生态位模拟预测濒危植物白豆杉5个时期的适宜分布区. 生态学杂志,39(2):600-613 Zhang W X,Kou Y X,Zhang L,et al. 2020. Suitable distribution of endangered species Pseudotaxus chienii (Cheng) Cheng (Taxaceae) in five periods using niche modeling. Chinese J Ecol,39(2):600-613 (in Chinese)
章宇阳,刘小刚,余宁等. 2020. 不同遮荫条件下施肥量对西南干热区小粒咖啡产量和肥料利用的影响. 应用生态学报,31(2):515-523 Zhang Y Y,Liu X G,Yu N,et al. 2020. Effects of fertilizer application on yield and fertilizer utilization of Coffea arabica in southwest dry-hot region of China under different shading levels. Chinese J Appl Ecol,31(2):515-523 (in Chinese)
赵明珠,郭铁英,马关润等. 2020. 土壤因子与小粒咖啡品质产量形成关系研究. 热带作物学报,41(6):1065-1075 DOI: 10.3969/j.issn.1000-2561.2020.06.001 Zhao M Z,Guo T Y,Ma G R,et al. 2020. Relationship between soil factors,quality and yield formation in Coffea arabica. Chinese J Trop Crops,41(6):1065-1075 (in Chinese) DOI: 10.3969/j.issn.1000-2561.2020.06.001
Bai D F,Chen P J,Atzeni L,et al. 2018. Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma national nature reserve based on MaxEnt modeling. Zool Res,39(6):373-386 DOI: 10.24272/j.issn.2095-8137.2018.057
Hijmans R J,Cameron S E,Parra J L,et al. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol,25(15):1965-1978 DOI: 10.1002/joc.1276
Kalboussi M,Achour H. 2018. Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and Geographic Information System (GIS). J For Res,29(1):233-245 DOI: 10.1007/s11676-017-0436-1
Sanchez A C,Osborne P E,Haq N,et al. 2010. Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agroforest Syst,80(2):191-201 DOI: 10.1007/s10457-010-9282-2
Tang C Q,Matsui T,Ohashi H,et al. 2018. Identifying long-term stable refugia for relict plant species in East Asia. Nat Commun,9(1):4488 DOI: 10.1038/s41467-018-06837-3
Walther G R,Berger S,Sykes M T. 2005. An ecological 'footprint' of climate change. Proc Roy Soc B Biol Sci,272(1571):1427-1432
Wang Z L,Zhang B,Zhang X Z,et al. 2019. Using MaxEnt model to guide marsh conservation in the Nenjiang River Basin,Northeast China. Chinese Geogr Sci,29(6):962-973 DOI: 10.1007/s11769-019-1082-7