留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山东半岛海风锋在一次飑线系统演变过程中的作用

万夫敬 孙继松 孙敏 梅婵娟 杨凡

万夫敬,孙继松,孙敏,梅婵娟,杨凡. 2021. 山东半岛海风锋在一次飑线系统演变过程中的作用. 气象学报,79(5):717-731 doi: 10.11676/qxxb2021.056
引用本文: 万夫敬,孙继松,孙敏,梅婵娟,杨凡. 2021. 山东半岛海风锋在一次飑线系统演变过程中的作用. 气象学报,79(5):717-731 doi: 10.11676/qxxb2021.056
Wan Fujing, Sun Jisong, Sun Min, Mei Chanjuan, Yang Fan. 2021. Impacts of sea breeze front over Shandong Peninsula on the evolution of a squall line. Acta Meteorologica Sinica, 79(5):717-731 doi: 10.11676/qxxb2021.056
Citation: Wan Fujing, Sun Jisong, Sun Min, Mei Chanjuan, Yang Fan. 2021. Impacts of sea breeze front over Shandong Peninsula on the evolution of a squall line. Acta Meteorologica Sinica, 79(5):717-731 doi: 10.11676/qxxb2021.056

山东半岛海风锋在一次飑线系统演变过程中的作用

doi: 10.11676/qxxb2021.056
详细信息
    作者简介:

    万夫敬,研究方向为强对流天气机理研究。E-mail:1005418392@qq.com

    通讯作者:

    孙继松,主要从事天气预报技术和强对流天气机理研究。E-mail:sunjs@cma.gov.cn

  • 中图分类号: P425.4+7

Impacts of sea breeze front over Shandong Peninsula on the evolution of a squall line

  • 摘要: 2016年6月30日生成于华北南部的一次长生命期的强飑线过程,造成了山东地区大范围风雹天气。文中利用常规观测资料、区域自动气象站观测数据及雷达监测产品,分析了山东半岛复杂的海风锋特征在这次飑线系统的断裂、再组织化以及极端大风、冰雹灾害形成过程中的重要作用。结果表明:(1)初始对流是在地面冷锋辐合线上触发的弱对流,在对流系统向更不稳定区域移动时与水平对流卷相交,对流迅速发展,并组织成东西走向的直线型飑线。(2)飑线系统在平原地区继续向前移动的过程中发生断裂,这一过程与渤海湾在黄河三角洲形成的两条移动方向不同的海风锋以及飑线系统的阵风锋有关:向内陆推进的两条海风锋与阵风锋在飑线系统中段的前部相交,诱发新生单体,造成该处对流系统更快地向前传播,最终导致飑线系统断裂;与此同时,断裂后的西段风暴因低层暖湿入流被切断而逐渐减弱。(3)断裂后西段残留风暴系统出流阵风产生的新生风暴向东北方向发展,与断裂后的东段风暴的后向传播(向西南方向发展)机制相互作用,完成了飑线的再次组织化,形成了具有典型弓状特征、水平尺度更大、近似于东北—西南走向的飑线系统。(4)长生命期飑线系统造成的极端雷暴大风和最大冰雹出现在飑线再组织化初期,位于飑线系统“弓部”位置,地面极端雷暴大风是冷池密度流、后侧入流急流和水成物对应的前侧下沉气流共同作用的结果,其中与后侧入流急流几乎完全分离的、与水成物对应的前侧下沉气流在这次极端地面大风发生时可能起到了重要作用。(5)山东半岛东侧的黄海海风锋向内陆推进(东南向西北)过程中与自西北向东南移动的飑线相遇,加强了风暴前侧的抬升、水汽供给和组织化程度,为飑线的长时间维持提供了有利条件。

     

  • 图 1  2016年6月30日12—20时飑线系统逐时演变过程 (色阶:45 dBz以上雷达组合反射率拼图,相同虚线颜色代表同一时次;风向杆:10级及以上阵风;绿色圆点:30 mm/h以上降水;▲:最大冰雹出现位置)

    Figure 1.  Hourly evolution of the squall line from 12:00 to 20:00 BT 30 June 2016 (color shaded:composite reflectivity above 45 dBz and the dashed lines in same color correspond to same time,wind barbs:gusts greater than Grade 10,green dots:hourly precipitation above 30 mm/h,▲:location of the largest hail)

    图 2  2016年6月30日08时 (a) 500 hPa、(b) 850 hPa、(c) 地面的天气形势和 (d) 青岛探空 (深棕色线:槽线,蓝色断线:锋面,绿色数字:露点温度)

    Figure 2.  Synoptic weather charts at (a) 500 hPa,(b) 850 hPa and (c) surface, and (d) skew T-lgP sounding diagram for Qingdao station (dark brown solid line:trough line,blue broken line:front,green numbers:dew temperature)

    图 4  2016年6月30日滨州雷达0.62°仰角不同时刻 (a. 13时18分,b. 13时36分,c. 14时23分,d. 14时29分,e. 14时46分) 的反射率因子与 (f) 垦利站 (☆位置) 气象要素演变

    Figure 4.  Radar reflectivity at 0. 62° elevation in Binzhou at (a) 13:18,(b) 13:36,(c) 14:23,(d) 14:29,and (e) 14:46 BT,and (f) evolution of weather elements at Kenli station (☆:the location of Kenli) on 30 June 2016

    图 5  2016年6月30日 (a) 14时10分和 (b) 14时30分的自动气象站流场、温度 (冷色阴影区) 叠加40 dBz以上雷达组合反射率 (暖色阴影区)(G:雷暴高压,红色断线:辐合线,绿色断线:海风锋辐合线;蓝色箭头:气流方向,W:西段风暴,E:东段风暴,S:新生风暴,▲:雷达站)

    Figure 5.  Distributions of surface temperature (cool color shaded),streamlines with composite reflectivity above 45 dBz (warm color shaded) at 14:10 (a) and 14:30 (b) BT 30 June 2016 (G:thunderstorm high,red broken line:convergence line,green broken line:sea breeze front convergence line,blue arrow:direction of airflow,W:the western storm,E:the eastern storm,S:newborn storm,▲:radar station)

    图 6  14时13分双雷达反演的 2 km (a) 和6 km (b) 高度风矢以及反射率因子 (色阶)

    Figure 6.  Retrieved wind vectors at 2 km (a) and 6 km (b) heights superimposed on radar reflectivity (shaded areas)

    图 8  2016年6月30日 (a) 14时58分和 (b) 15时03分潍坊雷达0.62°的反射率因子和沿白线的垂直剖面 (单位:dBz)

    Figure 8.  Reflectivity (unit:dBz) at 0. 62° elevation and the vertical sections along the white line at Weifang at (a) 14:58 and (b) 15:03 BT 30 June 2016

    图 9  2016年6月30日15时03分双多普勒雷达反演的风场和雷达反射率因子 (色阶)的垂直剖面 (▲:台头站位置;红色断线:阵风锋出流边界)

    Figure 9.  Vertical cross sections of reflectivity factor (shaded) and winds retrieved from the dual-Doppler radar at 15:03 BT 30 June 2016 (▲:Taitou station,red broken line:the outflow boundary of gust front)

    图 10  2016年6月30日 (a) 16时08分 、(b) 16时14分、 (c) 16时44分潍坊雷达0.62°反射率因子和 (d) 16时30分自动气象站物理量分布(温度 (色阶)、 风场 (只显示风速≥4 m/s的地面观测) 和等露点线) 以及 (e) 16时30分地面1 h变温 (冷色阴影)、流线和16时26分的雷达组合反射率因子 (暖色阴影)

    Figure 10.  (a—c) Radar reflectivity at 0.5° elevation at (a) 16:08,(b) 16:14,(c) 16:44 BT,(d) distributions of wind field (surface wind≥4 m/s),surface temperature (shaded areas) and dew temperature (broken line) at 16:30,(e) 1 h variation of temperature (cool color shaded),surface streamlines at 16:30 and radar composite reflectivity above 45 dBz (warm color shaded) at 16:26 BT on 30 June 2016

  • [1] 车军辉,郭红艳,史茜等. 2017. 地面辐合线演变与多尺度天气过程的相互作用分析. 干旱气象,35(1):91-99

    Che J H,Guo H Y,Shi Q,et al. 2017. Interaction between surface convergence lines and multi-scale weather processes. J Arid Meteor,35(1):91-99 (in Chinese)
    [2] 陈明轩,王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟. 气象学报,70(3):371-386

    Chen M X,Wang Y C. 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China. Acta Meteor Sinica,70(3):371-386 (in Chinese)
    [3] 刁秀广,车军辉,李静等. 2009. 边界层辐合线在局地强风暴临近预警中的应用. 气象,35(2):29-33 doi: 10.7519/j.issn.1000-0526.2009.02.005

    Diao X G,Chen J H,Li J,et al. 2009. Application of boundary convergence line in nowcasting warning of severe convective storm. Meteor Mon,35(2):29-33 (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.02.005
    [4] 刁秀广. 2018. 阵风锋、海风锋和冷锋等触发局地强对流风暴实例分析. 海洋气象学报,38(4):45-57

    Diao X G. 2018. Case study on severe local convective storms triggered by gust fronts,sea breeze fronts,and cold fronts. J Mar Meteor,38(4):45-57 (in Chinese)
    [5] 高晓梅,王世杰,王文波等. 2018. 2016年山东一次阵风锋触发的强对流天气分析. 海洋气象学报,38(2):67-75

    Gao X M,Wang S J,Wang W B,et al. 2018. Analysis of the severe convective weather caused by a gust front in Shandong in 2016. J Mar Meteor,38(2):67-75 (in Chinese)
    [6] 何娜,丁青兰,俞小鼎等. 2020. 北京及周边地区雷暴阵风锋特征统计分析. 气象学报,78(2):250-259

    He N,Ding Q L,Yu X D,et al. 2020. Statistical analysis of thunderstorm gust front characteristics in Beijing and surrounding areas. Acta Meteor Sinica,78(2):250-259 (in Chinese)
    [7] 侯淑梅,孙鹏程,杨璐瑛等. 2018. 环境场条件对雷暴传播运动影响实例分析. 海洋气象学报,38(4):58-70

    Hou S M,Sun P C,Yang L Y,et al. 2018. Case study on the influence of environmental field conditions on the propagation of thunderstorms. J Mar Meteor,38(4):58-70 (in Chinese)
    [8] 雷蕾,孙继松,陈明轩等. 2021. 北京地区一次飑线的组织化过程及热动力结构特征. 大气科学,45(2):287-299 doi: 10.3878/j.issn.1006-9895.2005.19198

    Lei L,Sun J S,Chen M X,et al. 2021. Organization process and thermal dynamic structure of a squall line in Beijing. Chinese J Atmos Sci,45(2):287-299 (in Chinese) doi: 10.3878/j.issn.1006-9895.2005.19198
    [9] 梁建宇,孙建华. 2012. 2009年6月一次飑线过程灾害性大风的形成机制. 大气科学,36(2):316-336 doi: 10.3878/j.issn.1006-9895.2011.11017

    Liang J Y,Sun J H. 2012. The formation mechanism of damaging surface wind during the squall line in June 2009. Chinese J Atmos Sci,36(2):316-336 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.11017
    [10] 梁钊明,高守亭,王东海等. 2013. 城市下垫面对渤海湾海风锋特征影响的一次数值试验. 大气科学,37(5):1013-1024 doi: 10.3878/j.issn.1006-9895.2013.12153

    Liang Z M,Gao S T,Wang D H,et al. 2013. A numerical study of the urban underlying surface effect on the characteristics of a sea breeze front in the Bohai Bay region. Chinese J Atmos Sci,37(5):1013-1024 (in Chinese) doi: 10.3878/j.issn.1006-9895.2013.12153
    [11] 梁钊明,高守亭,王东海等. 2014. 京津冀地区与海风锋相互作用的对流系统的发展预判分析. 气象学报,72(1):116-132

    Liang Z M,Gao S T,Wang D H,et al. 2014. Analysis of the development prognosis of the convective systems interacting with sea breeze front in the Beijing-Tianjin-Hebei region. Acta Meteor Sinica,72(1):116-132 (in Chinese)
    [12] 刘香娥,郭学良. 2012. 灾害性大风发生机理与飑线结构特征的个例分析模拟研究. 大气科学,36(6):1150-1164 doi: 10.3878/j.issn.1006-9895.2012.11212

    Liu X E,Guo X L. 2012. Analysis and numerical simulation research on severe surface wind formation mechanism and structural characteristics of a squall line case. Chinese J Atmos Sci,36(6):1150-1164 (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.11212
    [13] 潘玉洁,赵坤,潘益农等. 2012. 用双多普勒雷达分析华南一次飑线系统的中尺度结构特征. 气象学报,70(4):736-751 doi: 10.11676/qxxb2012.060

    Pan Y J,Zhao K,Pan Y N,et al. 2012. Dual-Doppler analysis of a squall line in southern China. Acta Meteor Sinica,70(4):736-751 (in Chinese) doi: 10.11676/qxxb2012.060
    [14] 漆梁波,陈春红,刘强军. 2006. 弱窄带回波在分析和预报强对流天气中的应用. 气象学报,64(1):112-120

    Qi L B,Chen C H,Liu Q J. 2006. Application of narrow-band echo in severe weather prediction and analysis. Acta Meteor Sinica,64(1):112-120 (in Chinese)
    [15] 孙继松,陶祖钰. 2012. 强对流天气分析与预报中的若干基本问题. 气象,38(2):164-173

    Sun J S,Tao Z Y. 2012. Some essential issues connected with severe convective weather analysis and forecast. Meteor Mon,38(2):164-173 (in Chinese)
    [16] 孙继松,何娜,郭锐等. 2013. 多单体雷暴的形变与列车效应传播机制. 大气科学,37(1):137-148 doi: 10.3878/j.issn.1006-9895.2012.12015

    Sun J S,He N,Guo R,et al. 2013. The configuration change and train effect mechanism of multi-cell storms. Chinese J Atmos Sci,37(1):137-148 (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.12015
    [17] 孙继松, 戴建华, 何立富等. 2014. 强对流天气预报的基本原理与技术方法: 中国强对流天气预报手册. 北京: 气象出版社, 282

    pp. Sun J S, Dai J H, He L F, et al. 2014. Basic Principles and Technical Methods of Strong Convective Weather Forecasting. Beijing: China Meteorological Press, 282pp(in Chinese)
    [18] 孙敏,戴建华,袁招洪等. 2015. 双多普勒雷达风场反演对一次后向传播雷暴过程的分析. 气象学报,73(2):247-262

    Sun M,Dai J H,Yuan Z H,et al. 2015. An analysis of a back-propogating thunderstorm using the three-dimensional wind fields retrieved by the dual-Doppler radar Data. Acta Meteor Sinica,73(2):247-262 (in Chinese)
    [19] 王秀明,俞小鼎,周小刚等. 2012. “6.3”区域致灾雷暴大风形成及维持原因分析. 高原气象,31(2):504-514

    Wang X M,Yu X D,Zhou X G,et al. 2012. Study on the formation and evolution of '6.3' damage wind. Plateau Meteor,31(2):504-514 (in Chinese)
    [20] 王彦, 高守亭, 梁钊明. 2014. 渤海湾海风锋触发雷暴的观测和模拟分析. 高原气象, 33(3): 848-854.

    Wang Y, Gao S T, Liang Z M. 2014. Analysis on the observation and simulation of thunderstorms triggered by sea breeze front in Bohai Bay. Plateau Meteor, 33(3): 504-514(in Chinese).
    [21] 杨波,孙继松,刘鑫华. 2019. 两类不同风灾个例超级单体特征对比分析. 气象学报,77(3):427-441

    Yang B,Sun J S,Liu X H. 2019. Comparative analysis of supercells associated with two different types of wind disaster. Acta Meteor Sinica,77(3):427-441 (in Chinese)
    [22] 俞小鼎, 姚秀萍, 熊廷南等. 2006. 多普勒天气雷达原理与业务应用. 北京: 气象出版社, 314

    pp. Yu X D, Yao X P, Xiong T N, et al. 2006. Doppler Weather Radar Principle and Business Applications. Beijing: China Meteorological Press, 314pp(in Chinese)
    [23] Chen M X,Wang Y C,Gao F,et al. 2012. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J Geophys Res Atmos,117(D20):D20115 doi: 10.1029/2012JD018158
    [24] Chen X C,Zhang F Q,Zhao K. 2016. Diurnal variations of the land-sea breeze and its related precipitation over South China. J Atmos Sci,73(12):4793-4815 doi: 10.1175/JAS-D-16-0106.1
    [25] Corfidi S F. 2003. Cold pools and MCS propagation:Forecasting the motion of downwind-developing MCSs. Wea Forecasting,18(6):997-1017 doi: 10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2
    [26] French A J,Parker M D. 2014. Numerical simulations of bow echo formation following a squall line-supercell merger. Mon Wea Rev,142(12):4791-4822 doi: 10.1175/MWR-D-13-00356.1
    [27] Fu D H,Guo X L. 2007. Numerical study on a severe downburst-producing thunderstorm on 23 August 2001 in Beijing. Adv Atmos Sci,24(2):227-238 doi: 10.1007/s00376-007-0227-2
    [28] Fujita T T,Byers H R. 1977. Spearhead echo and downburst in the crash of an airliner. Mon Wea Rev,105(2):129-146 doi: 10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2
    [29] Fujita T T, 1979. Objective, operation and results of Project NIMROD. Preprints, 11th conf. on Severe Local Storms, Kansas City, MO, American Meteorological Society, Boston, 259-266
    [30] Jeffreys H. 1922. On the dynamics of wind. Quart Roy Meteor Soc,48(201):29-48 doi: 10.1002/qj.49704820105
    [31] Mahale V N,Zhang G F,Xue M. 2016. Characterization of the 14 June 2011 Norman,Oklahoma,downburst through dual-polarization radar observations and hydrometeor classification. J Appl Meteor Climatol,55(12):2635-2655 doi: 10.1175/JAMC-D-16-0062.1
    [32] Markowski P, Richardson Y. 2010. Mesoscale Meteorology in Midlatitudes. Chichester: Wiley-Blackwell, 11-40
    [33] Meng Z Y,Zhang F Q,Markowski P,et al. 2012. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J Atmos Sci,69(4):1182-1207 doi: 10.1175/JAS-D-11-0121.1
    [34] Meng Z Y,Yan D C,Zhang Y J. 2013. General features of squall lines in East China. Mon Wea Rev,141(5):1629-1647 doi: 10.1175/MWR-D-12-00208.1
    [35] Proctor F H. 1989. Numerical simulations of an isolated microburst. Part Ⅱ:Sensitivity experiments. J Atmos Sci,46(14):2143-2165 doi: 10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2
    [36] Ray P S,Wagner K K,Johnson K W,et al. 1978. Triple-Doppler observations of a convective storm. J Appl Meteor Climatol,17(8):1201-1212 doi: 10.1175/1520-0450(1978)017<1201:TDOOAC>2.0.CO;2
    [37] Wakimoto R M,Bringi V N. 1988. Dual-polarization observations of microbursts associated with intense convection:The 20 July storm during the MIST project. Mon Wea Rev,116(8):1521-1539 doi: 10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2
    [38] Wu M W,Luo Y L. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J Meteor Res,30(5):719-736 doi: 10.1007/s13351-016-6089-8
    [39] Zhou A,Zhao K,Lee W C,et al. 2020. VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a Preline convective cell. J Geophys Res Atmos,125(7):e2019JD031719
  • 加载中
图(11)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  97
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-06-20
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回