留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气环境条件对夜间飑线影响的敏感性试验

袁招洪

袁招洪. 2021. 大气环境条件对夜间飑线影响的敏感性试验. 气象学报,79(6):977-1001 doi: 10.11676/qxxb2021.070
引用本文: 袁招洪. 2021. 大气环境条件对夜间飑线影响的敏感性试验. 气象学报,79(6):977-1001 doi: 10.11676/qxxb2021.070
Yuan Zhaohong. 2021. Sensitivity of a nocturnal squall line to atmospheric conditions. Acta Meteorologica Sinica, 79(6):977-1001 doi: 10.11676/qxxb2021.070
Citation: Yuan Zhaohong. 2021. Sensitivity of a nocturnal squall line to atmospheric conditions. Acta Meteorologica Sinica, 79(6):977-1001 doi: 10.11676/qxxb2021.070

大气环境条件对夜间飑线影响的敏感性试验

doi: 10.11676/qxxb2021.070
基金项目: 国家自然科学基金面上项目(41775049、41875059)
详细信息
    作者简介:

    袁招洪,主要从事大气探测和数值预报应用技术研究。E-mail:yuanwfh@163.com

  • 中图分类号: P435

Sensitivity of a nocturnal squall line to atmospheric conditions

  • 摘要: 利用CM1数值模式,以2017年8月7日发生在长江三角洲地区的一次夜间飑线过程为例,开展弱切变背景下中层相对湿度、低层风切变和对流有效位能的敏感性试验。结果表明:中层相对湿度升高,有利于夜间飑线雷达回波面积、回波强度和地面降温幅度增大。湿度降低,虽导致夜间飑线的雷达回波宽度变窄,但有利于夜间飑线结构和强度的维持。中层相对湿度的改变对夜间飑线成熟阶段的地面最大风速的影响并不十分明显,但是中层相对湿度的降低会增大地面最大风速的波动;低层风切变的增大使夜间飑线雷达回波强度增强、面积增大、移速变慢,也使飑线冷池强度增强,而对成熟飑线的冷池厚度和地面最大风速影响不大,但是更弱的环境风垂直切变更容易出现脉冲风暴地面强风。低层风切变的减小不利于夜间飑线的发展以及成熟夜间飑线结构和强度的维持;对流有效位能越大,越有利于夜间飑线雷达回波强度和回波面积以及冷池强度和厚度的增大,也有利于夜间飑线地面降温幅度和地面最大风速的增大。中等大小的对流有效位能更有利于成熟夜间飑线强度和结构的维持。低对流有效位能不利于夜间飑线发展,但在中层湿环境条件下依然能发展成为成熟的夜间飑线。该研究揭示了中层相对湿度、低层风切变和对流有效位能等大气环境条件对夜间飑线发生、发展的影响机制,为夜间飑线的预报提供了参考依据。

     

  • 图  1  常州雷达 (a. 18时12分,b. 19时57分,c. 20时32分) 和南汇雷达 (d. 21时22分, e. 22时17分,f. 23时30分) 探测到的飑线系统发展演变的雷达回波 (PPI,0.5°仰角,色阶,单位:dBz)

    Figure  1.  PPI of reflectivity factor (shaded,unit:dBz) at 0.5° elevation angle from Changzhou radar at (a) 18:12 BT,(b) 19:57 BT,(c) 20:32 BT,and from Nanhui radar at (d) 21:22 BT,(e) 22:17 BT,(f) 23:30 BT

    图  2  WRF模式模拟的“格点”探空曲线 (a) 与2017年8月7日20时宝山站探空曲线 (b) 的比较

    Figure  2.  Sounding profiles from (a) "grid" sounding simulated by WRF model and (b) Baoshan station at 20:00 BT 7 August 2017

    图  3  CM1初始场“格点”探空曲线 (a) 与冷池和热泡位温强迫扰动 (b) 示意

    Figure  3.  Initial conditions for the idealized simulations (a. "grid" sounding profile,b. potential temperature perturbations (shaded) for cold pool and 2 bubbles in the CM1 model domain)

    图  4  CM1积分 (a) 20、(b) 90、(c) 130、(d) 180、(e) 240、(f) 300 min后模拟飑线2 km高度的雷达回波

    Figure  4.  2 km CAPPI of the reflectivity simulated by the CM1 at (a) 20 min,(b) 90 min,(c) 130 min,(d) 180 min,(e) 240 min and (f) 300 min

    图  7  各试验 (a) 地面最大风速和 (b) 地面最大降温随模式积分时间的变化

    Figure  7.  Time series of (a) maximum surface wind and (b) maximum surface temperature deficit for various schemes

    图  8  各试验 (a) 平均冷池强度和 (b) 平均冷池厚度随模式积分时间的变化

    Figure  8.  Time series of (a) domain mean cold pool intensity and (b) domain mean cold pool depth for various schemes

    图  10  RH1 (a) 和RH2 (b) 试验模式积分290 min时垂直速度加速度 (a1、 b1)、气压梯度力项 (a2、 b2)、浮力项 (a3、 b3) 和凝结物项 (a4、 b4) 的垂直剖面 (黑色等值线,间隔0.01 m/s2

    Figure  10.  Cross sections of (a1, b1) PWDT,(a2, b2) VPGA,(a3, b3) BUOY and (a4, b4) LOAD (black contour,interval of 0.01 m/s2) along cross line for RH1 scheme (a) and RH2 scheme (b) at 290 min of the simulation

    10.  Continued

    图  11  各试验平均CU随模式积分时间的变化

    Figure  11.  Time series of averaged CU along the cross line for various schemes

    图  12  各试验 (a. Ctl,b. SHR1,c. SHR2,d. SHR3) CM1模式积分240 min模拟的2 km高度雷达回波

    Figure  12.  2 km CAPPI of reflectivity simulated by (a) Ctl,(b) SHR1,(c) SHR2 and (d) SHR3 schemes at 240 min

    图  13  各试验 (a) 地面最大风速和 (b) 地面最大降温随模式积分时间的变化

    Figure  13.  Time series of (a) maximum surface wind and (b) maximum surface temperature deficit for various schemes

    图  14  各试验 (a) 平均冷池强度和 (b) 平均冷池厚度随模式积分时间的变化

    Figure  14.  Time series of (a) domain mean cold pool intensity,(b) domain mean cold pool depth averaged along the cross line for various schemes

    图  15  各试验 (a. Ctl,b. SHR1,c. SHR3) 时空平均的垂直速度 (蓝色等值线,间隔0.5 m/s) 和冷池降温 (色阶,单位:℃) 垂直剖面

    Figure  15.  Cross sections of line-averaged vertical velocity (blue contour,intervals of 0.5 m/s) and cold pool temperature deficit (shaded,unit:℃) along the cross line for (a) Ctl,(b) SHR1 and (c) SHR3 schemes (the values are computed by averaging over 320—360 min of the simulations)

    15.  Continued

    图  16  各试验平均 CU随模式积分时间的变化

    Figure  16.  Time series of averaged CU along the cross line for various schemes

    图  17  模式积分275 min时(a) SHR1、(b) SHR2试验垂直速度加速度 (黑实线,间隔0.01 m/s2) 的垂直剖面以及 (c) SHR1、(d) SHR2试验的冷池前沿上升气流质量通量 (黑实线,间隔1.0 kg/(m2•s))、冷池 (黑虚线,间隔−1℃) 和风速的垂直剖面

    Figure  17.  Cross sections of PWDT (black solid contour,interval of 0.01 m/s2) for (a) SHR1 and (b) SHR2 schemes,updraft flux (black solid contour,interval of 1.0 kg/(m2•s)) with cold pool (black dotted contour,interval of −1℃) and wind for (c) SHR1 and (d) SHR2 schemes along cross line at 275 min of the simulation

    图  18  各试验 (a. Ctl,b. CAPE1,c. CAPE2,d. CAPE2+RH) CM1模式积分340 min模拟飑线2 km高度的雷达回波

    Figure  18.  2 km CAPPI of radar reflectivity simulated by (a) Ctl,(b) CAPE1,(c) CAPE2,and (d) CAPE2+RH schemes at 340 min of the simulation

    图  19  各试验模拟的 (a) 地面最大风速和 (b) 地面最大降温幅度随模式积分时间的变化

    Figure  19.  Time series of (a) maximum surface wind and (b) maximum surface temperature deficit for various schemes

    图  20  各试验模拟的 (a) 平均冷池强度和 (b) 平均冷池厚度随模式积分时间的变化

    Figure  20.  Time series of (a) domain mean cold pool intensity,(b) domain mean cold pool depth averaged along the cross line for various schemes

    图  22  各试验平均CU随模式积分时间的变化

    Figure  22.  Time series of CU averaged along the cross line for various schemes

    图  23  CAPE2试验 (a—c) 和CAPE2+RH试验 (d—f) 模式积分340 min时垂直速度加速度 (a、d)、气压梯度力项 (b、e) 和浮力项 (c、f) 的垂直剖面 (黑色等值线,间隔0.01 m/s2

    Figure  23.  Cross sections of (a,d) PWDT,(b,e) VPGA,(c,f) BUOY (black contour,interval of 0.01 m/s2) along cross line for CAPE2 scheme (a—c) and CAPR2+RH scheme (d—f) at 340 min of the simulation

    23.  Continued

    表  1  CM1模式(V19.9)参数配置

    Table  1.   Summary of CM1 (V19.9) model settings for simulations

    模式参数配置
    水平格点X:400,Y:350
    水平分辨率(Δx,Δx1 km
    垂直层次50
    模式顶高20 km
    积云参数化方案
    微物理方案Thompson
    辐射参数化方案
    陆面过程参数化方案
    侧边界条件东西侧:开放辐射,南北侧:周期性
    模拟时间6 h
    模拟结果输出时间间隔5 min
    下载: 导出CSV
  • [1] 梁建宇,孙建华. 2012. 2009年6月一次飑线过程灾害性大风的形成机制. 大气科学,36(2):316-336 doi: 10.3878/j.issn.1006-9895.2011.11017

    Liang J Y,Sun J H. 2012. The formation mechanism of damaging surface wind during the squall line in June 2009. Chinese J Atmos Sci,36(2):316-336 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.11017
    [2] 曲晓波,王建捷,杨晓霞等. 2010. 2009年6月淮河中下游三次飑线过程的对比分析. 气象,36(7):151-159 doi: 10.7519/j.issn.1000-0526.2010.07.022

    Qu X B,Wang J J,Yang X X,et al. 2010. Contrast analysis of three squall lines in middle and lower reaches of the Huaihe River in June 2009. Meteor Mon,36(7):151-159 (in Chinese) doi: 10.7519/j.issn.1000-0526.2010.07.022
    [3] 孙虎林,罗亚丽,张人禾等. 2011. 2009年6月3—4日黄淮地区强飑线成熟阶段特征分析. 大气科学,35(1):105-120 doi: 10.3878/j.issn.1006-9895.2011.01.09

    Sun H L,Luo Y L,Zhang R H,et al. 2011. Analysis on the mature-stage features of the severe squall line occurring over the Yellow River and Huaihe River Basins during 3—4 June 2009. Chinese J Atmos Sci,35(1):105-120 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.01.09
    [4] 陶岚,袁招洪,戴建华等. 2014. 一次夜间弓形回波特征分析. 气象学报,72(2):220-236

    Tao L,Yuan Z H,Dai J H,et al. 2014. Analysis of the characteristics of a nocturnal bow echo. Acta Meteor Sinica,72(2):220-236 (in Chinese)
    [5] 杨珊珊,谌芸,李晟祺等. 2016. 冷涡背景下飑线过程统计分析. 气象,42(9):1079-1089 doi: 10.7519/j.issn.1000-0526.2016.09.005

    Yang S S,Chen Y,Li S Q,et al. 2016. Analysis of squall lines under the background of cold vortex. Meteor Mon,42(9):1079-1089 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.09.005
    [6] 俞小鼎,周小刚,王秀明. 2012. 雷暴与强对流临近天气预报技术进展. 气象学报,70(3):311-337

    Yu X D,Zhou X G,Wang X M. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica,70(3):311-337 (in Chinese)
    [7] 袁招洪. 2015. 不同分辨率和微物理方案对飑线阵风锋模拟的影响. 气象学报,73(4):648-666

    Yuan Z H. 2015. Study of the influence of the different horizontal resolutions and microphysical setups on the idealized simulation of a squall line. Acta Meteor Sinica,73(4):648-666 (in Chinese)
    [8] 郑永光,田付友,孟智勇等. 2016. “东方之星”客轮翻沉事件周边区域风灾现场调查与多尺度特征分析. 气象,42(1):1-13 doi: 10.7519/j.issn.1000-0526.2016.01.001

    Zheng Y G,Tian F Y,Meng Z Y,et al. 2016. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship "Dongfangzhixing". Meteor Mon,42(1):1-13 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.01.001
    [9] Alfaro D A. 2017. Low-tropospheric shear in the structure of squall lines:Impacts on latent heating under layer-lifting ascent. J Atmos Sci,74(1):229-248 doi: 10.1175/JAS-D-16-0168.1
    [10] Billings J M,Parker M D. 2012. Evolution and maintenance of the 22—23 June 2003 nocturnal convection during BAMEX. Wea Forecast,27(2):279-300 doi: 10.1175/WAF-D-11-00056.1
    [11] Bryan G H,Fritsch J M. 2002. A benchmark simulation for moist nonhydrostatic numerical models. Mon Wea Rev,130(12):2917-2928 doi: 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
    [12] Bryan G H,Morrison H. 2012. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon Wea Rev,140(1):202-225 doi: 10.1175/MWR-D-11-00046.1
    [13] Coffer B E,Parker M D. 2015. Impacts of increasing low-level shear on supercells during the early evening transition. Mon Wea Rev,143(5):1945-1969 doi: 10.1175/MWR-D-14-00328.1
    [14] Crook N A,Carbone R E,Moncrieff M W,et al. 1990. The generation and propagation of a nocturnal squall line. Part Ⅱ:Numerical simulations. Mon Wea Rev,118(1):50-66 doi: 10.1175/1520-0493(1990)118<0050:TGAPOA>2.0.CO;2
    [15] Fovell R G,Mullendore G L,Kim S H. 2006. Discrete propagation in numerically simulated nocturnal squall lines. Mon Wea Rev,134(12):3735-3752 doi: 10.1175/MWR3268.1
    [16] French A J,Parker M D. 2010. The response of simulated nocturnal convective systems to a developing low-level jet. J Atmos Sci,67(10):3384-3408 doi: 10.1175/2010JAS3329.1
    [17] Fritsch J M,Murphy J D,Kain J S. 1994. Warm core vortex amplification over land. J Atmos Sci,51(13):1780-1807 doi: 10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2
    [18] Fujita T T. 1978. Manual of downburst identification for project NIMROD. Chicago:University of Chicago,19-31
    [19] Gale J J,Gallus W A Jr,Jungbluth K A. 2002. Toward improved prediction of mesoscale convective system dissipation. Wea Forecast,17(4):856-872 doi: 10.1175/1520-0434(2002)017<0856:TIPOMC>2.0.CO;2
    [20] Gebauer J G,Shapiro A,Fedorovich E,et al. 2018. Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon Wea Rev,146(8):2615-2637 doi: 10.1175/MWR-D-18-0002.1
    [21] Geerts B,Parsons D,Ziegler C L,et al. 2017. The 2015 plains elevated convection at night field project. Bull Amer Meteor Soc,98(4):767-786 doi: 10.1175/BAMS-D-15-00257.1
    [22] Koch S E,Clark W L. 1999. A nonclassical cold front observed during COPS-91:Frontal structure and the process of severe storm initiation. J Atmos Sci,56(16):2862-2890 doi: 10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2
    [23] Koch S E,Feltz W,Fabry F,et al. 2008. Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation. Mon Wea Rev,136(4):1373-1400 doi: 10.1175/2007MWR2252.1
    [24] Laing A G,Fritsch J M. 2000. The large-scale environments of the global populations of mesoscale convective complexes. Mon Wea Rev,128(8):2756-2776 doi: 10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2
    [25] Lebo Z J,Morrison H. 2014. Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon Wea Rev,142(3):991-1009 doi: 10.1175/MWR-D-13-00156.1
    [26] Maddox R A. 1983. Large-scale meteorological conditions associated with midlatitude,mesoscale convective complexes. Mon Wea Rev,111(7):1475-1493 doi: 10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2
    [27] Markowski P M,Straka J M,Rasmussen E N,et al. 1998. Variability of storm-relative helicity during VORTEX. Mon Wea Rev,126(11):2959-2971 doi: 10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2
    [28] Parker M D. 2008. Response of simulated squall lines to low-level cooling. J Atmos Sci,65(4):1323-1341 doi: 10.1175/2007JAS2507.1
    [29] Parker M D,Borchardt B S,Miller R L,et al. 2020. Simulated evolution and severe wind production by the 25—26 June 2015 nocturnal MCS from PECAN. Mon Wea Rev,148(1):183-209 doi: 10.1175/MWR-D-19-0072.1
    [30] Peters J M. 2016. The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J Atmos Sci,73(11):4531-4551 doi: 10.1175/JAS-D-16-0016.1
    [31] Peters J M,Nielsen E R,Parker M D,et al. 2017. The impact of low-level moisture errors on model forecasts of an MCS observed during PECAN. Mon Wea Rev,145(9):3599-3624 doi: 10.1175/MWR-D-16-0296.1
    [32] Peters J M,Hannah W,Morrison H. 2019a. The influence of vertical wind shear on moist thermals. J Atmos Sci,76(6):1645-1659 doi: 10.1175/JAS-D-18-0296.1
    [33] Peters J M,Nowotarski C J,Morrison H. 2019b. The role of vertical wind shear in modulating maximum supercell updraft velocities. J Atmos Sci,76(10):3169-3189 doi: 10.1175/JAS-D-19-0096.1
    [34] Peters K,Hohenegger C. 2017. On the dependence of squall-line characte-ristics on surface conditions. J Atmos Sci,74(7):2211-2228 doi: 10.1175/JAS-D-16-0290.1
    [35] Pitchford K L,London J. 1962. The low-level jet as related to nocturnal thunderstorms over Midwest United States. J Appl Meteor,1(1):43-47 doi: 10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2
    [36] Rotunno R,Klemp J B,Weisman M L. 1988. A theory for strong,long-lived squall lines. J Atmos Sci,45(3):463-485 doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
    [37] Su T,Zhai G. 2017. The role of convectively generated gravity waves on convective initiation:A case study. Mon Wea Rev,145(1):335-359 doi: 10.1175/MWR-D-16-0196.1
    [38] Takemi T,Satomura T. 2000. Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments. J Atmos Sci,57(11):1718-1740 doi: 10.1175/1520-0469(2000)057<1718:NEOTMF>2.0.CO;2
    [39] Trier S B,Davis C A,Ahijevych D A,et al. 2006. Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J Atmos Sci,63(10):2437-2461 doi: 10.1175/JAS3768.1
    [40] Weisman M L,Rotunno R. 2000. The use of vertical wind shear versus helicity in interpreting supercell dynamics. J Atmos Sci,57(9):1452-1472 doi: 10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2
    [41] Wilson J W,Roberts R D. 2006. Summary of convective storm initiation and evolution during IHOP:Observational and modeling perspective. Mon Wea Rev,134(1):23-47 doi: 10.1175/MWR3069.1
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  11
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 录用日期:  2021-11-12
  • 修回日期:  2021-10-25
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2021-12-27

目录

    /

    返回文章
    返回