Processing math: 100%

GRIST模式夏季气候回报试验中东亚降水季节内特征的评估

陈苏阳, 张祎, 周逸辉, 李晓涵, 王一鸣, 陈昊明

陈苏阳,张祎,周逸辉,李晓涵,王一鸣,陈昊明. 2023. GRIST模式夏季气候回报试验中东亚降水季节内特征的评估. 气象学报,81(2):269-285. DOI: 10.11676/qxxb2023.20220120
引用本文: 陈苏阳,张祎,周逸辉,李晓涵,王一鸣,陈昊明. 2023. GRIST模式夏季气候回报试验中东亚降水季节内特征的评估. 气象学报,81(2):269-285. DOI: 10.11676/qxxb2023.20220120
Chen Suyang, Zhang Yi, Zhou Yihui, Li Xiaohan, Wang Yiming, Chen Haoming. 2023. Assessment of intraseasonal characteristics of precipitation over East Asia in the GRIST model summer climate hindcast . Acta Meteorologica Sinica, 81(2):269-285. DOI: 10.11676/qxxb2023.20220120
Citation: Chen Suyang, Zhang Yi, Zhou Yihui, Li Xiaohan, Wang Yiming, Chen Haoming. 2023. Assessment of intraseasonal characteristics of precipitation over East Asia in the GRIST model summer climate hindcast . Acta Meteorologica Sinica, 81(2):269-285. DOI: 10.11676/qxxb2023.20220120

GRIST模式夏季气候回报试验中东亚降水季节内特征的评估

详细信息
    作者简介:

    陈苏阳,主要从事模式评估研究。E-mail:326130299@qq.com

    通讯作者:

    张祎,主要从事数值预报模式发展改进及评估等研究。E-mail:yizhang@cma.gov.cn

  • 中图分类号: P435

Assessment of intraseasonal characteristics of precipitation over East Asia in the GRIST model summer climate hindcast

  • 摘要: 基于中国自主研发的全球-区域一体化预测系统(GRIST)模式,分析了其在夏季气候回报试验中的东亚地区夏季降水气候特征,重点关注季节内尺度的变化。通过与格点融合分析数据(CMPA)、卫星观测数据(GPM)及两个全球气候模式(CAM5和SPCAM5)结果进行比较,检验模式性能并探究模式间的差异。结果表明,GRIST模式能较好地模拟出西北太平洋及中国东部地区季节内降水变化及其演变过程,但模拟的降水变化幅度和雨量与观测相比偏高。进一步探究其内部影响,发现小时尺度视热源(Q1)、视水汽汇(Q2)和大尺度垂直速度等在垂直剖面上随时间的变化皆与模拟降水的演变对应。模式能准确地再现雨带和副热带高压脊线的位置及其向北推进过程,并能基本抓住大气季节内振荡(ISO)经向北传特征。但ISO传播强度、周期等与观测存在较大差异。这可能与纬向风移动路径较远、持续时间较长有关。
    Abstract: Based on the seasonal climate hindcast experiment of the Global-to-Regional Integrated forecast SysTem (GRIST) model, the simulated climate features of East Asian summer precipitation are analyzed with emphasis on the intraseasonal variation. Compared with the China Merged hourly Precipitation Analysis (CMPA) grid fusion analysis dataset, the Global Precipitation Measurement (GPM) satellite dataset and results of two global climate models, i.e., the Community Atmosphere Model version 5 (CAM5) and the SuperParameterized CAM5 (SPCAM5), this study evaluates the simulation results and explores the inter-model differences. Results show that the GRIST can better simulate seasonal variation and evolution of precipitation over the Northwest Pacific Ocean and eastern China, but the magnitude of precipitation variation and rainfall amount are higher than the observed values. It is shown that precipitation evolution closely corresponds to daily mean vertical variations of hourly apparent heat source (Q1) and apparent moisture sink (Q2) and large-scale vertical velocity. The model can accurately reproduce the location and northward progression of rain belt and the subtropical high ridge line, and overall can capture the northward propagation of the Intrasesonal Oscillation (ISO). However, the intensity and period of the ISO propagation are quite different from the observations possibly due to the long moving path and duration of zonal wind.
  • 图  1   不同数据源 (a. GPM,b. CAM5,c. SPCAM5,d. GRIST-NWP) 给出的东亚地区夏季 (6—8月) 平均降水量 (单位:mm/d;色阶表示各组数据与CMPA的偏差,右上角数字分别表示不同模式与CMPA的空间相关系数)

    Figure  1.   Summer (June to August) mean precipitation amounts (unit:mm/d) over East Asia from the (a) GPM data,(b) CAM5 simulation,(c) SPCAM5 simulation,and (d) GRIST-NWP simulation (differences between each group data and CMPA result are indicated by color shadings,the numbers in the upper right corners of the panels respectively represent the spatial correlation coefficients between results of the corresponding models and CMPA data)

    图  2   不同数据源 (a. CMPA,b. GPM,c. CAM5,d. SPCAM5,e. GRIST-NWP) 给出的东亚地区夏季内 (6—8月) 旬平均降水的标准差分布 (单位:mm/d)

    Figure  2.   Standard deviations of intra-summer (June to August) 10-day-averaged precipitation rate (unit:mm/d) from the (a) CMPA data,(b) GPM data,(c) CAM5 simulation,(d) SPCAM5 simulation,and (e) GRIST-NWP simulation

    图  3   不同数据源 (a. CMPA, b. GPM, c. CAM5, d. SPCAM5, e. GRIST-NWP) 给出的中国东部地区 (25°—40°N,105°—118°E) 平均降水逐旬演变 (单位:mm/d)

    Figure  3.   Average precipitation changes at 10-day interval over eastern China (25°—40°N,105°—118°E) (unit:mm/d) from the (a) CMPA data,(b) GPM data,(c) CAM5 simulation,(d) SPCAM5 simulation,and (e) GRIST-NWP simulation

    图  4   各模式模拟的Q1 (a—c)和Q2 (d—f) (23°—33°N,108°—118°E) 区域平均的垂直-时间剖面 (单位:K/d;a、d. CAM5,b、e. SPCAM5,c、f. GRIST-NWP)

    Figure  4.   Vertical-time corss sections of daily mean Q1 (a—c) and Q2 (d—f) over (23°—33°N,108°—118°E )(unit:K/d) from the (a,d) CAM5 simulation,(b,e) SPCAM5 simulation and (c,f) GRIST-NWP simulation

    图  5   各模式模拟的水汽垂直平流 (a—c) 和温度垂直平流 (d—f) 倾向 (23°—33°N,108°—118°E) 区域平均的垂直-时间剖面 (单位:K/d;a、d. CAM5,b、e. SPCAM5,c、f. GRIST-NWP)

    Figure  5.   Vertical-time ccorss sections of vertical water vapor advection tendency (a—c) and vertical temperature advection tendency (d—f) over (23°—33°N,108°—118°E) (unit:K/d;a,d. CAM5 simulation,b,e. SPCAM5 simulation,c,f. GRIST-NWP simulation)

    图  6   不同数据源 (a. ERA5,b. CAM5,c. SPCAM5,d. GRIST-NWP) 给出的大尺度垂直速度沿 (23°—33°N,108°—118°E) 区域平均的垂直-时间剖面 (单位:10−2 Pa/s)

    Figure  6.   Vertical-time corss sections of averaged large-scale vertical velocity over (23°—33°N,108°—118°E )(unit:10−2 Pa/s) from the (a) ERA5 data,(b) CAM5 simulation,(c) SPCAM5 simulation,and (d) GRIST-NWP simulation

    图  7   不同数据源 (a. CMPA, b. GPM, c. CAM5, d. SPCAM5, e. GRIST-NWP) 给出的东亚地区雨带移动示意 (以3 mm/d平均降水量等值线表示雨带,其中6月1—15日为橙线,6月16日—7月15日为红线,7月16日—8月15日为蓝线,8月16—31日为绿线。注:此图经过了图像过滤处理,去除了部分区域非线性带状等值线,仅保留带状主雨带)

    Figure  7.   Diagram of rain belt movement over East Asia ( the corresponding 3 mm/d precipitation contour line averaged over the periods 1—15 June (orange solid line),16 June—15 July (red solid line),16 July—15 August (blue solid line),and 16—31 August (green solid line) from the (a) CMPA data,(b) GPM data,(c) CAM5 simulation,(d) SPCAM5 simulation,and (e) GRIST-NWP simulation (Note that the image has been filtered to remove small scale signals)

    图  8   不同数据源 (a. ERA5,b. CAM5,c. SPCAM5,d. GRIST-NWP ) 给出的500 hPa西北太平洋副热带高压脊线位置 (单位:gpm;以u/y0u=0的等值线表示脊线,其中6月1—15日为橙线,6月16日—7月15日为红线,7月16日—8月15日为蓝线,8月16—31日为绿线;数字表示西北太平洋副热带高压的强度Is

    Figure  8.   Diagram of intraseasonal evolution of 500 hPa NPSH ridge (unit:gpm;when u/y0 and u=0,the corresponding contour line represents the ridge over periods 1—15 June (orange solid line),16 June—15 July (red solid line),16 July—15 August (blue solid line),and 16—31 August (green solid line)) from the (a) ERA5 data,(b) CAM5 simulation,(c) SPCAM5 simulation,and (d) GRIST-NWP simulation (the numbers in the figure are Is that represent the intensity of NPSH)

    图  9   不同数据源 (a. CMPA,b. GPM,c. CAM5,d. SPCAM5,e. GRIST-NWP) 给出的经30—60 d带通滤波后的平均降水沿108°—118°E的纬度-时间剖面 (单位:mm/d)

    Figure  9.   Latitude-time cross sections of mean precipitation rate between 108°E and 118°E after 30—60 d band-pass filtering (unit:mm/d) from the (a) CMPA data,(b) GPM data,(c) CAM5 simulation,(d) SPCAM5 simulation,and (e) GRIST-NWP simulation

    图  10   不同数据源给出的850 hPa风 (a、c、e、g. 纬向风平均, b、d、f、h. 经向风平均) 沿108°—118°E的纬度-时间剖面 (单位:m/s; a、b. ERA5, c、d. CAM5, e、f. SPCAM5, g、h. GRIST-NWP)

    Figure  10.   Latitude-time cross sections of 850 hPa wind speed (a,c,e,g. mean zonal wind;b,d,f,h. mean meridional wind) averaged between 108°E and 118°E (unit:m/s) from the (a,b) ERA5 data,(c,d) CAM5 simulation,(e,f) SPCAM5 simulation,and (g,h) GRIST-NWP simulation

  • 陈官军. 2014. 中国南方夏季区域持续性强降水与大气季节内振荡[D]. 北京: 中国气象科学研究院. Chen G J. 2014. Itraseasonal oscillation of the summer monsoon and its infulence on regionally persistent heavy rainfall over southern China[D]. Beijing: Chinese Academy of Meteorological Sciences (in Chinese)
    丁一汇. 1994. 中国的夏季风降雨及其区域特征∥丁一汇,村上胜人. 亚洲季风. 北京:气象出版社,76-83

    Ding Y H. 1994. Summer monsoon rainfall and its regional characteristics in China∥Ding Y H,Cun S S R. Asian Monsoon. Beijing:China Meteorological Press,76-83 (in Chinese)

    高学杰,徐影,赵宗慈等. 2006. 数值模式不同分辨率和地形对东亚降水模拟影响的试验. 大气科学,30(2):185-192

    Gao X J,Xu Y,Zhao Z C,et al. 2006. Impacts of horizontal resolution and topography on the numerical simulation of East Asian precipitation. Chinese J Atmos Sci,30(2):185-192 (in Chinese)

    黄菲,黄少妮,张旭. 2008. 中国降水季节内振荡的气候特征分析. 中国海洋大学学报,38(2):173-177

    Huang F,Huang S N,Zhang X. 2008. Study on the climatological intraseasonal oscillation of Chinese rainfall. Periodical Ocean Univ China,38(2):173-177 (in Chinese)

    黄嘉佑,刘舸,赵昕奕. 2004. 副高、极涡因子对我国夏季降水的影响. 大气科学,28(4):517-526

    Huang J Y,Liu G,Zhao X Y. 2004. The influence of subtropical high indexes and polar vortex indexes on the summertime precipitation in China. Chinese J Atmos Sci,28(4):517-526 (in Chinese)

    黄荣辉,徐予红,王鹏飞等. 1998. 1998年夏长江流域特大洪涝特征及其成因探讨. 气候与环境研究,3(4):300-313

    Huang R H,Xu Y H,Wang P F,et al. 1998. The features of the catastrophic flood over the Changjiang River basin during the summer of 1998 and cause exploration. Climatic Environ Res,3(4):300-313 (in Chinese)

    贾燕,管兆勇. 2010. 江淮流域夏季降水异常与西北太平洋副热带30—60天振荡强度年际变化的联系. 大气科学,34(4):691-702

    Jia Y,Guan Z Y. 2010. Associations of summertime rainfall anomalies over the Changjiang-Huaihe River valley with the interannual variability of 30-60-day oscillation intensity in the northwestern Pacific. Chinese J Atmos Sci,34(4):691-702 (in Chinese)

    金荣花,代刊,赵瑞霞等. 2019. 我国无缝隙精细化网格天气预报技术进展与挑战. 气象,45(4):445-457

    Jin R H,Dai K,Zhao R X,et al. 2019. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon,45(4):445-457 (in Chinese)

    琚建华,钱诚,曹杰. 2005. 东亚夏季风的季节内振荡研究. 大气科学,29(2):187-194

    Ju J H,Qian C,Cao J. 2005. The intraseasonal oscillation of East Asian summer monsoon. Chinese J Atmos Sci,29(2):187-194 (in Chinese)

    琚建华,孙丹,吕俊梅. 2008. 东亚季风区大气季节内振荡经向与纬向传播特征分析. 大气科学,32(3):523-529

    Ju J H,Sun D,Lü J M. 2008. The relay character analysis of the zonal and longitudinal propagations of the atmospheric intraseasonal oscillation in the East Asian monsoon region. Chinese J Atmos Sci,32(3):523-529 (in Chinese)

    李崇银,龙振夏,穆明权. 2003. 大气季节内振荡及其重要作用. 大气科学,27(4):518-535

    Li C Y,Long Z X,Mu M Q. 2003. Atmospheric intraseasonal oscillation and its important effect. Chinese J Atmos Sci,27(4):518-535 (in Chinese)

    梁萍,丁一汇. 2012. 东亚梅雨季节内振荡的气候特征. 气象学报,70(3):418-435

    Liang P,Ding Y H. 2012. Climatologic characteristics of the intraseasonal oscillation of East Asian meiyu. Acta Meteor Sinica,70(3):418-435 (in Chinese)

    林爱兰,梁建茵,谷德军. 2008. 热带大气季节内振荡对东亚季风区的影响及不同时间尺度变化研究进展. 热带气象学报,24(1):11-19

    Lin A L,Liang J Y,Gu D J. 2008. Review of impacts of tropical atmospheric intraseasonal oscillation on East Asia monsoon and multiple time scales variation of tropical atmospheric intraseasonal oscillation. J Trop Meteor,24(1):11-19 (in Chinese)

    齐艳军,容新尧. 2014. 次季节-季节预测的应用前景与展望:“次季节-季节预测(S2S)”会议评述. 气象科技进展,4(3):74-75

    Qi Y J,Rong X Y. 2014. Application prospect and prospect of subseason to seasonal forecasting—Comments on "Subseason to Seasonal forecasting (S2S)" conference. Adv Meteor Sci Technol,4(3):74-75 (in Chinese)

    沈艳,冯明农,张洪政等. 2010. 我国逐日降水量格点化方法. 应用气象学报,21(3):279-286

    Shen Y,Feng M N,Zhang H Z,et al. 2010. Interpolation methods of China daily precipitation data. J Appl Meteor Sci,21(3):279-286 (in Chinese)

    孙丹,琚建华,吕俊梅. 2008. 2003年东亚季风季节内振荡对我国东部地区降水的影响. 热带气象学报,24(6):641-648

    Sun D,Ju J H,Lü J M. 2008. The influence of the intraseasonal oscillation of the East Asian monsoon on the precipitation in East China in 2003. J Trop Meteor,24(6):641-648 (in Chinese)

    孙丹,周天军,刘景卫等. 2011. 变网格模式LMDZ对1998年夏季东亚季节内振荡的模拟. 大气科学,35(5):885-896 DOI: 10.3878/j.issn.1006-9895.2011.05.08

    Sun D,Zhou T J,Liu J W,et al. 2011. Simulation of the East Asian intraseasonal oscillation in 1998 with the variable-resolution model LMDZ. Chinese J Atmos Sci,35(5):885-896 (in Chinese) DOI: 10.3878/j.issn.1006-9895.2011.05.08

    陶诗言,张庆云,张顺利. 1998. 1998年长江流域洪涝灾害的气候背景和大尺度环流条件. 气候与环境研究,3(4):290-299

    Tao S Y,Zhang Q Y,Zhang S L. 1998. The great floods in the Changjiang River valley in 1998. Climatic Environ Res,3(4):290-299 (in Chinese)

    王遵娅,丁一汇. 2008. 中国雨季的气候学特征. 大气科学,32(1):1-13

    Wang Z Y,Ding Y H. 2008. Climatic characteristics of rainy seasons in China. Chinese J Atmos Sci,32(1):1-13 (in Chinese)

    吴捷,任宏利,张帅等. 2017. BCC二代气候系统模式的季节预测评估和可预报性分析. 大气科学,41(6):1300-1315

    Wu J,Ren H L,Zhang S,et al. 2017. Evaluation and predictability analysis of seasonal prediction by BCC second-generation climate system model. Chinese J Atmos Sci,41(6):1300-1315 (in Chinese)

    谢义炳,陈受钧,张一良等. 1963. 东南亚基本气流与台风发生的一些事实的统计与分析. 气象学报,33(2):206-217

    Xie Y B,Chen S J,Zhang Y L,et al. 1963. A preliminarily statistic and synoptic study about the basic currents over southeastern asia and the initiation of typhoons. Acta Meteor Sinica,33(2):206-217 (in Chinese)

    叶笃正,严中伟,戴新刚等. 2006. 未来的天气气候预测体系. 气象,32(4):3-8

    Ye D Z,Yan Z W,Dai X G,et al. 2006. A discussion of future system of weather and climate prediction. Meteor Mon,32(4):3-8 (in Chinese)

    赵崇博, 任宏利, 吴捷等. 2016. BCC_CSM1.2次季节-季节(S2S)预报历史回报的综合检验评估报告. 北京: 国家气候中心气候研究开放实验室. Zhao C B, Ren H L, Wu J, et al. 2016. BCC_CSM1.2 Subseasonal to seasonal (S2S) forecast historical return comprehensive test evaluation report. Beijing: National Climate Center, Open Laboratory for Climate Research (in Chinese)

    Bechtold P,Semane N,Lopez P,et al. 2014. Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci,71(2):734-753 DOI: 10.1175/JAS-D-13-0163.1

    Chen H M,Zhou T J,Neale R B,et al. 2010. Performance of the New NCAR CAM3.5 in East Asian summer monsoon simulations:Sensitivity to modifications of the convection scheme. J Climate,23(13):3657-3675 DOI: 10.1175/2010JCLI3022.1

    Collins W D, Rasch P J, Boville B A, et al. 2004. Description of the NCAR Community Atmosphere Model (CAM 3.0) (No. NCAR/TN-464+STR). University Corporation for Atmospheric Research

    Guo L,Zhu C W,Liu B Q,et al. 2018. Subseasonal variation of winter rainfall anomalies over South China during the mature phase of super El Niño events. Atmos Oceanic Sci Lett,11(5):396-403 DOI: 10.1080/16742834.2018.1505404

    He B,Bao Q,Wang X C,et al. 2019. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv Atmos Sci,36(8):771-778 DOI: 10.1007/s00376-019-9027-8

    He B,Liu Y M,Wu G X,et al. 2020. CAS FGOALS-f3-L model datasets for CMIP6 GMMIP Tier-1 and Tier-3 experiments. Adv Atmos Sci,37(1):18-28 DOI: 10.1007/s00376-019-9085-y

    Hersbach H,Bell B,Berrisford P,et al. 2020. The ERA5 global reanalysis. Quart J Roy Meteor Soc,146(730):1999-2049 DOI: 10.1002/qj.3803

    Hong S Y,Lim J O J. 2006a. The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc,42:129-151

    Hong S Y,Noh Y,Dudhia J. 2006b. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev,134(9):2318-2341 DOI: 10.1175/MWR3199.1

    Huffman G J, Bolvin D T, Braithwaite D, et al. 2019. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG)

    Hurrell J,Meehl G A,Bader D,et al. 2009. A unified modeling approach to climate system prediction. Bull Amer Meteor Soc,90(12):1819-1832 DOI: 10.1175/2009BAMS2752.1

    Iacono M J,Delamere J S,Mlawer E J,et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models. J Geophys Res:Atmos,113(D13):D13103 DOI: 10.1029/2008JD009944

    IPCC. 2013. Climate Change 2013:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Inter govern- mental Panel on Climate Change. Cambridge:Cambridge University Press,1535pp

    Jung T,Miller M J,Palmer T N,et al. 2012. High-resolution global climate simulations with the ECMWF model in project Athena:Experimental design,model climate,and seasonal forecast skill. J Climate,25(9):3155-3172 DOI: 10.1175/JCLI-D-11-00265.1

    Khairoutdinov M,DeMott C,Randall D. 2008. Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J Climate,21(3):413-431 DOI: 10.1175/2007JCLI1630.1

    Knutson T R,Weickmann K M,Kutzbach J E. 1986. Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Mon Wea Rev,114(3):605-623 DOI: 10.1175/1520-0493(1986)114<0605:GSIOOO>2.0.CO;2

    Li J,Yu R C,Yuan W H,et al. 2015. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J Adv Model Earth Syst,7(2):774-790 DOI: 10.1002/2014MS000414

    Li J H,Zhang Y. 2022. Enhancing the stability of a global model by using an adaptively implicit vertical moist transport scheme. Meteor Atmos Phys,134(3):55 DOI: 10.1007/s00703-022-00895-5

    Li J P,Chou J F. 1998. Dynamical analysis on splitting of subtropical high-pressure zone:Geostrophic effect. Chinese Sci Bull,43(15):1285-1289 DOI: 10.1007/BF02884143

    Li J X,Bao Q,Liu Y M,et al. 2017. Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmos Oceanic Sci Lett,10(4):329-336 DOI: 10.1080/16742834.2017.1331111

    Li J X,Bao Q,Liu Y M,et al. 2019. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. J Adv Model Earth Syst,11(4):1117-1136 DOI: 10.1029/2018MS001506

    Li X H,Zhang Y,Peng X D,et al. 2022. Improved climate simulation by using a double-plume convection scheme in a global model. J Geophys Res:Atmos,127(11):e2021JD036069

    Lin S J. 2004. A "vertically Lagrangian" finite-volume dynamical core for global models. Mon Wea Rev,132(10):2293-2307 DOI: 10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

    Liu Z, Zhang Y, Huang X, et al. 2020. Development and performance optimization of a parallel computing infrastructure for an unstructured-mesh modelling framework. Geosci Model Dev Discuss. doi: 10.5194/gmd-2020-158

    Madden R A,Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci,28(5):702-708 DOI: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2

    Mlawer E J,Taubman S J,Brown P D,et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave. J Geophys Res:Atmos,102(D14):16663-16682 DOI: 10.1029/97JD00237

    Niu G Y,Yang Z L,Mitchell K E,et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP):1. Model description and evaluation with local-scale measurements. J Geophys Res:Atmos,116(D12):D12109 DOI: 10.1029/2010JD015139

    Nobre C,Brasseur G P,Shapiro M A,et al. 2010. Addressing the complexity of the Earth system. Bull Amer Meteor Soc,91(10):1389-1396 DOI: 10.1175/2010BAMS3012.1

    Palmer T. 2020. Short-term tests validate long-term estimates of climate change. Nature,582(7811):185-186 DOI: 10.1038/d41586-020-01484-5

    Palmer T N,Doblas-Reyes F J,Weisheimer A,et al. 2008. Toward seamless prediction:Calibration of climate change projections using seasonal forecasts. Bull Amer Meteor Soc,89(4):459-470 DOI: 10.1175/BAMS-89-4-459

    Ramage C S. 1971. Monsoon Meteorology. New York:Academic Press,296pp

    Shapiro M,Shukla J,Brunet G,et al. 2010. An earth-system prediction initiative for the twenty-first century. Bull Amer Meteor Soc,91(10):1377-1388 DOI: 10.1175/2010BAMS2944.1

    Shen Y,Zhao P,Pan Y,et al. 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J Geophys Res:Atmos,119(6):3063-3075 DOI: 10.1002/2013JD020686

    Shukla J,Palmer T N,Hagedorn R,et al. 2010. Toward a new generation of world climate research and computing facilities. Bull Amer Meteor Soc,91(10):1407-1412 DOI: 10.1175/2010BAMS2900.1

    Simmons A J,Burridge D M. 1981. An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Wea Rev,109(4):758-766 DOI: 10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2

    Slingo J M,Sperber K R,Boyle J S,et al. 1996. Intraseasonal oscillations in 15 atmospheric general circulation models:Results from an AMIP diagnostic subproject. Climate Dyn,12(5):325-357 DOI: 10.1007/BF00231106

    Wan H,Rasch P J,Zhang K,et al. 2014. Short ensembles:An efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models. Geosci Model Dev,7(5):1961-1977 DOI: 10.5194/gmd-7-1961-2014

    Wang B,Xu X H. 1997. Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J Climate,10(5):1071-1085 DOI: 10.1175/1520-0442(1997)010<1071:NHSMSA>2.0.CO;2

    Wang B,Yang H W. 2008. Hydrological issues in lateral boundary conditions for regional climate modeling:Simulation of East Asian summer monsoon in 1998. Climate Dyn,31(4):477-490 DOI: 10.1007/s00382-008-0385-7

    Wang L,Zhang Y,Li J,et al. 2019. Understanding the performance of an unstructured-mesh global shallow water model on kinetic energy spectra and nonlinear vorticity dynamics. J Meteor Res,33(6):1075-1097 DOI: 10.1007/s13351-019-9004-2

    Wang M,Ghan S,Easter R,et al. 2011. The multi-scale aerosol-climate model PNNL-MMF:Model description and evaluation. Geosci Model Dev,4(1):137-168 DOI: 10.5194/gmd-4-137-2011

    WMO. 2015. In: Brunet G, Jones S, Ruti P M (Eds. ). Seamless Prediction of the Earth System: From Minutes to Months. World Meteorological Organization (WMO-No. 1156)

    Yan Y H,Liu B Q,Zhu C W,et al. 2022. Subseasonal forecast barrier of the North Atlantic oscillation in S2S models during the extreme mei-yu rainfall event in 2020. Climate Dyn,58(11):2913-2925

    Yanai M,Esbensen S,Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci,30(4):611-627 DOI: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2

    Yang Z L,Niu G Y,Mitchell K E,et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP):2. Ev- aluation over global river basins. J Geophys Res:Atmos,116(D12):D12110 DOI: 10.1029/2010JD015140

    Yu R C,Li J,Chen H M,et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China. J Meteor Res,28(5):877-902 DOI: 10.1007/s13351-014-3272-7

    Yu R C,Zhang Y,Wang J J,et al. 2019. Recent progress in numerical atmospheric modeling in China. Adv Atmos Sci,36(9):938-960 DOI: 10.1007/s00376-019-8203-1

    Zhang C X,Wang Y Q. 2017. Projected future changes of tropical cyclone activity over the Western North and South Pacific in a 20-km-Mesh regional climate model. J Climate,30(15):5923-5941 DOI: 10.1175/JCLI-D-16-0597.1

    Zhang Y,Chen H M. 2016. Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia:Mean state,frequency-intensity relationship,diurnal cycle,and influencing factors. J Climate,29(3):1067-1089 DOI: 10.1175/JCLI-D-15-0342.1

    Zhang Y. 2018. Extending high-order flux operators on spherical icosahedral grids and their applications in the framework of a shallow water model. J Adv Model Earth Syst,10(1):145-164 DOI: 10.1002/2017MS001088

    Zhang Y,Li J,Yu R C,et al. 2019. A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling:Model description,baseline evaluation,and sensitivity exploration. J Adv Model Earth Syst,11(6):1685-1714 DOI: 10.1029/2018MS001539

    Zhang Y,Li J,Yu R C,et al. 2020. A multiscale dynamical model in a dry-mass coordinate for weather and climate modeling:Moist dynamics and its coupling to physics. Mon Wea Rev,148(7):2671-2699 DOI: 10.1175/MWR-D-19-0305.1

    Zhang Y,Yu R C,Li J,et al. 2021. AMIP simulations of a global model for unified weather-climate forecast:Understanding precipitation characte-ristics and sensitivity over East Asia. J Adv Model Earth Syst,13(11):e2021MS002592

    Zhang Y,Li X H,Liu Z,et al. 2022. Resolution sensitivity of the GRIST nonhydrostatic model from 120 to 5 km (3.75 km) during the DYAMOND winter. Earth Space Sci,9(9):e2022EA002401

    Zhang Z B,Platnick S,Ackerman A S,et al. 2015. Spectral dependence of MODIS cloud droplet effective radius retrievals for marine boundary layer clouds∥Kokhanovsky A A. Light Scattering Reviews 9. Berlin,Heidelberg:Springer,135-165

    Zhou Y H,Zhang Y,Li J,et al. 2020. Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach. Geosci Model Dev,13(12):6325-6348 DOI: 10.5194/gmd-13-6325-2020

  • 期刊类型引用(9)

    1. Shuo JIA,Jiefan YANG,Hengchi LEI. Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau. Advances in Atmospheric Sciences. 2024(01): 97-114 . 必应学术
    2. 贾烁,杨洁帆,雷恒池,韩辉邦,周万福,闫非. X波段双偏振雷达物理量时间——高度剖面的重构方法改进及应用研究. 大气科学. 2024(03): 938-954 . 百度学术
    3. 张晋茹,杨莲梅,刘凡,李建刚,周玉淑. 基于Ka波段云雷达观测的中国西天山降雨云宏微观物理特征研究. 大气科学. 2023(03): 756-768 . 百度学术
    4. 孙艺搏,吴小飞. 2014年7月5日那曲一次对流降水的数值模拟及组织过程分析. 高原山地气象研究. 2023(03): 11-20 . 百度学术
    5. 范思睿,王维佳,刘贵华,刘平. 基于NPP卫星反演四川盆地夏季云降水微物理特征. 成都信息工程大学学报. 2021(04): 467-471 . 百度学术
    6. 万霞,徐桂荣,万蓉,王斌,任靖,罗成. 青藏高原东侧甘孜云雷达观测的非降水云垂直结构特征分析. 暴雨灾害. 2020(05): 442-450 . 百度学术
    7. 侯文轩,华维,郭艺媛,黄天赐,范广洲. 青藏高原那曲地区一次对流云降水的数值模拟. 高原山地气象研究. 2020(03): 18-28 . 百度学术
    8. 朱怡杰,邱玉珺,陆春松. 青藏高原那曲夏季云中水成物分布特征的毫米波雷达观测. 气象. 2019(07): 945-957 . 百度学术
    9. 郭学良,方春刚,卢广献,楼小凤,苏正军,于子平,李培仁,杨泽厚. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报. 2019(06): 641-650 . 百度学术

    其他类型引用(5)

图(10)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-10-07
  • 网络出版日期:  2022-10-07
  • 刊出日期:  2023-04-23

目录

    /

    返回文章
    返回