数值模式中对流与云参数化的回顾与展望:中国科学家的贡献

Progress and perspective of convection and cloud parameterization in numerical models: Contributions from Chinese scientists

  • 摘要: 回顾了数值模式中对流与云参数化的发展历程,并重点介绍了中国科学家在这一领域的重要贡献。首先介绍了对流参数化的发展历程,包括早期的Kuo(郭晓岚)方案和对流调整方案,当前广泛使用的质量通量型方案和基于机器学习的方案,并详细介绍了中国科学家研发和改进的方案,以及这些方案对数值模式的改进效果。随后,探讨了云参数化方案的发展历程,阐述了中国科学家在云宏物理方案和云微物理方案取得的成果。最后,展望了未来对流与云参数化的发展方向,指出深度学习技术将在未来发挥重要作用,并提出了发展混合模型和多尺度气候建模方法的建议。

     

    Abstract: This article reviews advances of convection and cloud parameterizations in numerical models with a focus on significant contributions of Chinese scientists in this field. This article begins by outlining the development of convection parameterization, including the Kuo scheme, the moist convective adjustment scheme, the widely used mass flux schemes, and the machine learning-based schemes. It introducues in detail the schemes developed and revised by Chinese scientists, as well as the resulting improvements in the numerical models by these schemes. This article then explores advances in cloud parameterization schemes and highlights the achievements of Chinese scientists in both cloud macrophysics and microphysics schemes. Finally, this review discusses possible future directions in the development of convection and cloud parameterization, emphasizing the crucial role expected for deep learning, and proposes pathways for the advancement of hybrid models and multi-scale climate modeling methods.

     

/

返回文章
返回