STDA-Net:基于时空特征融合和双重注意力交互网络的热带气旋强度估计

STDA-Net: Tropical Cyclone Intensity Estimation Based on Spatiotemporal Feature Fusion and Dual Attention Interaction Network

  • 摘要: 目的热带气旋强度估计对于防灾减灾具有重要的现实意义,然而现有方法在估计精度、时空信息利用率及通道特征提取能力方面仍存在一定的局限。资料和方法为解决上述问题,以西北太平洋为研究海域,提出了一种新颖的基于时空特征融合和双重注意力交互网络的热带气旋强度估计模型—STDA-Net。该模型由三个核心模块构成:空间特征提取模块用于捕捉热带气旋的空间特性;时间特征提取模块旨在提取其变化过程中的时间特征;空间-通道交互模块则通过交互空间和通道注意力来增强对关键信息的提取。结果实验结果表明,STDA-Net在估计西北太平洋热带气旋强度方面的表现均优于对比的其他深度学习方法,达到了9.42 knots的RMSE值和7.22 knots的MAE值,并在2019-2021年多个热带气旋事件中表现出较强的估计性能。结论从而表明STDA-Net在估计西北太平洋热带气旋强度任务中性能良好,证实了其准确性和优越性。

     

    Abstract: Tropical cyclone intensity estimation is of great practical significance for disaster prevention and mitigation. However, the existing methods still have some limitations in estimation accuracy, spatiotemporal information utilisation and channel feature extraction capability. In order to solve the above problems, a novel tropical cyclone intensity estimation model, STDA-Net, based on spatiotemporal feature fusion and dual attention interactive networks, is proposed, with the Northwest Pacific Ocean serving as the study area. The model consists of three core modules: The spatial feature extraction module is used to capture the spatial characteristics of tropical cyclones; the temporal feature extraction module aims at extracting the temporal characteristics of its changing process; and the spatial-channel interaction module enhances the extraction of vital information by interacting spatial and channel attention. The experimental findings reveal that STDA-Net outperforms the other deep learning methods compared in estimating the intensity of tropical cyclones in the Northwest Pacific Ocean, achieving RMSE and MAE of 9.42 knots and 7.22 knots, respectively, and exhibiting robust estimation performance for multiple tropical cyclone events from 2019 to 2021. It is shownthat STDA-Net performs well in estimating the intensity of tropical cyclones in the Northwest Pacific, confirming its accuracy and superiority.

     

/

返回文章
返回