DualST:基于双重时空网络的ENSO预测模型

DualST: ENSO prediction model based on dual spatiotemporal network

  • 摘要: 目的准确的厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation, ENSO)预测对于预防极端天气气候事件具有重要意义。近年来,深度学习在ENSO预测领域已取得显著进展,但现有模型在捕捉复杂动态时空关联方面仍存在局限。资料和方法为解决上述问题,以英国气象局哈德利中心提供的全球海温信息为研究数据,提出了一种基于双重时空网络架构(Dual Spatial Temporal Network, DualST)的ENSO预测模型,该模型创新性地设计了时空图卷积网络(Spatiotemporal Graph Convolutional Network, ST-GCN),通过新颖的边计算模块学习ENSO时空数据之间的连接性,并将其转换为图数据,使得图卷积网络能够精准捕捉ENSO复杂的时空动态特性。此外,利用注意力机制擅长捕捉长距离依赖的优势,来提高ENSO长期预测准确性。结果试验结果表明,DualST在Ni?o3.4指数预测相关系数上显著优于对比的其他先进深度学习模型,并可以达到20个月的有效ENSO预测。此外,MAE和RMSE的增长也较为平缓。结论从而表明,DualST模型通过边计算等创新模块有效建模了海温场之间的动态连接关系,显著提升了ENSO的长期预测性能。

     

    Abstract: Accurate El Ni?o-Southern Oscillation (ENSO) predictions are important for preventing extreme weather and climate events. Although deep learning has made significant progress in the field of ENSO prediction, existing models still have limitations in capturing complex dynamic spatial and temporal correlations. To address the above problems, the study uses global SST data provided by the UK Met Office Hadley Centre, and proposes an ENSO prediction model based on the Dual Spatial Temporal Network (DualST) architecture, which innovatively designs a Spatiotemporal Graph Convolutional Network (ST-GCN) that learns the connectivity between ENSO spatiotemporal data through a novel edge computing module and converts it to graph data, enabling the graph convolutional network to accurately capture the complex spatiotemporal dynamic characteristics of ENSO. In addition, the advantage of the attention mechanism, which is good at capturing long-range dependencies, is exploited to improve the long-term prediction accuracy of ENSO. The experimental results show that DualST significantly outperforms the other state-of-the-art deep learning models compared in terms of Ni?o 3.4 index prediction correlation coefficients and can achieve 20 months of effective ENSO prediction, in addition to a more moderate increase in MAE and RMSE. Thus, it is shown that the DualST model effectively modelled the dynamic connectivity between SST fields through innovative modules such as edge calculation, which significantly improved the long-term prediction performance of ENSO.

     

/

返回文章
返回