DualST:基于双重时空网络的ENSO预测模型

Dual-ST: Dual spatiotemporal networks for ENSO prediction

  • 摘要: 准确的厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)预测对于预防极端天气、气候事件具有重要意义。近年来,深度学习在ENSO预测领域已取得显著进展,但现有模型在捕捉复杂动态时、空关联方面仍存在局限。为解决上述问题,以英国气象局哈得来中心提供的全球海温信息为研究数据,提出了一种基于双重时空网络架构(Dual Spatial Temporal Network,DualST)的ENSO预测模型,该模型创新性地设计了时空图卷积网络(Spatiotemporal Graph Convolutional Network,ST-GCN),通过新颖的边计算模块学习ENSO时空数据之间的连接性,并将其转换为图数据,使得图卷积网络能够精准捕捉ENSO复杂的时、空动态特性。此外,利用注意力机制擅长捕捉长距离依赖的优势,来提高ENSO长期预测准确度。试验结果表明,DualST在Nino3.4指数预测相关系数上显著优于对比的其他深度学习模型,并可以达到20个月的有效ENSO预测。此外,MAE和RMSE的增长也较为平缓。从而表明,DualST模型通过边计算等创新模块有效建模了海温场之间的动态连接关系,显著提升了ENSO的长期预测性能。

     

    Abstract: Accurate El Niño-Southern Oscillation (ENSO) predictions are important for mitigating extreme weather and climate events. Although significant progress has been made in deep learning for ENSO prediction, current models still have limitations in capturing complex dynamic spatial and temporal correlations. To address the above problems, the present study uses global SST data provided by the UK Met Office Hadley Centre and proposes an ENSO prediction model based on the Dual Spatial Temporal Network (DualST) architecture, which innovatively designs a Spatiotemporal Graph Convolutional Network (ST-GCN) that learns the connectivity between ENSO spatiotemporal data through a novel edge computing module and converts it to graph data, enabling the graph convolutional network to accurately capture the complex spatiotemporal dynamic characteristics of ENSO. In addition, the advantage of the attention mechanism, which is good at capturing long-range dependencies, is exploited to improve the long-term prediction accuracy of ENSO. Experimental results show that DualST significantly outperforms other state-of-the-art deep learning models in terms of the Nino 3.4 index prediction correlation coefficient and can achieve effective ENSO prediction up to 20 months with moderate increases in MAE and RMSE. Therefore, the DualST model can effectively model the dynamic connectivity between SST fields through innovative modules such as edge calculation, and significantly improves long-term prediction of ENSO.

     

/

返回文章
返回