张理论, 宋君强, 赵文涛, 胡江林. 2011: 基于并行可扩展科学计算工具集求解GRAPES全球非静力模式亥姆霍兹问题. 气象学报, (3): 432-439. DOI: 10.11676/qxxb2011.037
引用本文: 张理论, 宋君强, 赵文涛, 胡江林. 2011: 基于并行可扩展科学计算工具集求解GRAPES全球非静力模式亥姆霍兹问题. 气象学报, (3): 432-439. DOI: 10.11676/qxxb2011.037
ZHANG Lilun, SONG Junqiang, ZHAO Wentao, HU Jianglin. 2011: Solving Helmholtz equations of the GRAPES global nonhydrostatic model based on the PETSc.. Acta Meteorologica Sinica, (3): 432-439. DOI: 10.11676/qxxb2011.037
Citation: ZHANG Lilun, SONG Junqiang, ZHAO Wentao, HU Jianglin. 2011: Solving Helmholtz equations of the GRAPES global nonhydrostatic model based on the PETSc.. Acta Meteorologica Sinica, (3): 432-439. DOI: 10.11676/qxxb2011.037

基于并行可扩展科学计算工具集求解GRAPES全球非静力模式亥姆霍兹问题

Solving Helmholtz equations of the GRAPES global nonhydrostatic model based on the PETSc.

  • 摘要: 亥姆霍兹方程是非静力平衡大气模式动力内核的主要计算瓶颈之一,其离散矩阵性态差,采用常见预条件Krylov迭代往往收敛很慢。随着全球非静力平衡大气模式时空分辨率的不断提高,亥姆霍兹方程求解面临求解精度和计算时间的双重困难。在高分辨率情况下,迭代计算步数和计算量剧增,而且很多传统的预条件迭代求解方法不收敛,迫切需要研究收敛性和并行可扩展性兼备的预条件迭代方法。为此,在安腾机群上建立了基于并行可扩展科学计算工具集(PETSc)的GRAPES全球非静力平衡模式亥姆霍兹问题并行解法器对比研究平台,结合高性能预条件库(hypre),完成了对GRAPES在用解法器、代数多重网格、并行不完全LU分解(EUCLID)及加性Schwarz区域分解等一系列克雷洛夫预条件迭代的分析对比。结果显示PETSc结合高性能预条件库的并行方案是解决GRAPES模式三维亥姆霍兹方程高效并行计算的一个有效途径,其中以代数多重网格预条件迭代的性能最突出;并行加速比分析显示,代数多重网格预条件迭代的并行可扩展性明显优于GRAPES现有解法器,更适用于更高精度和较大规模并行计算。

     

    Abstract: Starting from the Eulerian operator, the forecasting equations with 2order time and space differential remainder are derived in light of the Taylor series expansion.The quasiLagrangian integration scheme with an algorithm of numerical analysis the-bicubic surface interpolation-for a new meteorological numerical model is then suggested. It describes atmospheric motions just as nonlinear cubic waves, with fitting different bicubic surfaces to physical scalar or vector variable fields in the model atmosphere, i.e. the pressure, temperature, humidity, wind and divergence as well as the generalized Newtonian force acting to unit air mass on the rotating earth (acceleration). With the procedure of “fitting bicubic surface-time step integration-fitting bicubic surface……” through oneto one correspondecnce with the Hermite bicubic patches to parameterize the latitudelongitudinal meshes in light of rectangular topologies so as to get the secondorder derivative, a new model’s dynamic core comes true. Because of that the bicubic surface has two numerical analysis laws of the convergence and the optimality of the second-order derivative, it is necessary and sufficient reason mathematically to select the bicubic surface interpolation for calculating the upstream point of a quasi-Lagrangian air parcel. It covers the slope, curvature and torsion of every nonlinear variable in the atmospheric motions, that is, one Hermite bicubic patch is mathematically equivalent to one secondary derivative (bicubic) variable “mesh” in the model atmosphere, and the former is “convergent”to the latter-with “optimality”. The quasiLagrangian integration of calculating the upstream point with interpolation on the Hermite bicubic patch is also equivalent to the Eulerian integration with the unitive CFL computational stability criterion. It’s easy to fit a holoscopic variable field to a global bicubic surface, and make some reasonable local area or single point smoothing, according to some conditions of its slope, curvature or torsion, which must conform to the physical constraints such as mass conservation for pressure smooth, energy conservation for temperature smooth, and momentum conservation for wind smooth. Obviously it’s easy to put a new “patch” of bicubic surface on the smoothed place.

     

/

返回文章
返回