周志敏, 郭学良, 崔春光, 李兴宇, 徐桂荣, 赵玉春. 2011: 强风暴电过程对霰粒子含量和谱分布影响的数值模拟研究. 气象学报, (5): 830-846. DOI: 10.11676/qxxb2011.073
引用本文: 周志敏, 郭学良, 崔春光, 李兴宇, 徐桂荣, 赵玉春. 2011: 强风暴电过程对霰粒子含量和谱分布影响的数值模拟研究. 气象学报, (5): 830-846. DOI: 10.11676/qxxb2011.073
ZHOU Zhimin, GUO Xueliang, CUI Chunguang, LI Xingyu, XU Guirong, ZHAO Yuchun. 2011: A simulative study of the influnce of electric processes on the content and the size distribution of graupel in a severe thunderstorm.. Acta Meteorologica Sinica, (5): 830-846. DOI: 10.11676/qxxb2011.073
Citation: ZHOU Zhimin, GUO Xueliang, CUI Chunguang, LI Xingyu, XU Guirong, ZHAO Yuchun. 2011: A simulative study of the influnce of electric processes on the content and the size distribution of graupel in a severe thunderstorm.. Acta Meteorologica Sinica, (5): 830-846. DOI: 10.11676/qxxb2011.073

强风暴电过程对霰粒子含量和谱分布影响的数值模拟研究

A simulative study of the influnce of electric processes on the content and the size distribution of graupel in a severe thunderstorm.

  • 摘要: 利用建立的耦合电过程三维冰粒子分档模式(通过引入电场力来考虑电场对粒子的影响),模拟研究了北京一次强雷暴发展过程中电过程对霰粒子含量、数浓度的影响。结果发现:(1)相对小的霰粒子含量受电过程直接影响较大,这种影响累积后,会对相对较大的霰粒子含量产生间接作用。在冰雹发展的初期和成熟期的部分阶段,电场对霰粒子最大含量所处空间位置基本没有影响。而在冰雹发展的成熟期向衰败期过渡时的部分时刻,电场对其稍有影响。在霰粒子最大含量处,直径相对较大的霰粒子决定着总的霰粒子含量。(2)总体来说,直径较小的霰粒子数浓度受电场影响较大,直径较大的霰粒子数浓度受电场影响较小。由于霰粒子含量中心大直径粒子较多,而其受电场的影响相对较小,并且该处电场也小于电场极值,故其最大含量受电场影响相对较小。所以,在此次个例的模拟过程中,霰粒子最大含量的时变曲线变化很小。(3)考虑电过程情况下,在霰粒子数浓度最大处,小直径霰粒子数浓度要么增加,要么略微减少,而大直径霰粒子要么进档增长受阻,要么数浓度减少。对不同直径的霰粒子来说,电过程既有可能使其数浓度增加,又有可能使其数浓度减少。当电场较大时,电过程对小直径霰粒子的影响比较直接,而对大直径霰粒子的影响相对间接;当电场较小时,电过程对霰粒子的谱分布影响相对较小。

     

    Abstract: A threedimensional hailbin cloud model coupled with electrification process was developed and used for simulating influences of electric processes on water content and number density of graupel (considering the effect of electric fields on hydrometeors through electric field force) in a severe thunderstorm in Beijing City in China. The results show that: (1) The water content of relatively smallersize graupel is influenced more by the electric processes, which may later have an indirect effect on the content of relatively biggersize graupel. In the center areas of graupel content, the electric field is not maximum or minimum, whose influences on the graupel with largersize and the maximum graupel content ( QgMax) are relatively less. Therefore, little changes occur in the time evolution ofQ gMax. (2) On the whole, in the model domain, the influence of electric process on microphysical processes, which will influence the number density of graupel, is different in different regions; where the electric field is stronger, the influence of electric process on the graupel with smallersize is more direct than that with largersize. The influence of electric processes on the size distribution of graupel is less at areas where electric field is weaker. (3) In the process of formation and development of graupel, electric processes show no influence on the position of the maximum cloud water content, and the position has important influence on accretion of graupel. Therefore, the formation and distribution of graupel would not be highly influenced by electric processes. Although the size distribution of graupel changes a little, the position of the maximum graupel content does not change notably. Therefore, electric processes are able to influence the total quantity and the region of hail-fall, but not notably.

     

/

返回文章
返回