王启花, 杨素英, 李艳伟, 银燕, 张泽锋, 陈魁, 赵丽君. 2016: 黄山夏季气溶胶多尺度吸湿性的参数化方案构建研究. 气象学报, (6): 989-1001. DOI: 10.11676/qxxb2016.076
引用本文: 王启花, 杨素英, 李艳伟, 银燕, 张泽锋, 陈魁, 赵丽君. 2016: 黄山夏季气溶胶多尺度吸湿性的参数化方案构建研究. 气象学报, (6): 989-1001. DOI: 10.11676/qxxb2016.076
WANG Qihua, YANG Suying, LI Yanwei, YIN Yan, ZHANG Zefeng, CHEN Kui, ZHAO Lijun. 2016: A study of multi-size aerosol hygroscopic parameterization in the summer over Huangshan Mountain. Acta Meteorologica Sinica, (6): 989-1001. DOI: 10.11676/qxxb2016.076
Citation: WANG Qihua, YANG Suying, LI Yanwei, YIN Yan, ZHANG Zefeng, CHEN Kui, ZHAO Lijun. 2016: A study of multi-size aerosol hygroscopic parameterization in the summer over Huangshan Mountain. Acta Meteorologica Sinica, (6): 989-1001. DOI: 10.11676/qxxb2016.076

黄山夏季气溶胶多尺度吸湿性的参数化方案构建研究

A study of multi-size aerosol hygroscopic parameterization in the summer over Huangshan Mountain

  • 摘要: 利用2014年7月在黄山光明顶观测的气溶胶吸湿性参数(κ)和气溶胶离子化学组分、有机碳(OC,organic carbon)数据,对多尺度气溶胶吸湿性参数进行分析,并在此基础上建立了多尺度κ的参数化方案。研究结果表明,影响黄山夏季气溶胶来源的主要气团包括西南气团、北方气团以及东南气团。黄山夏季κ的变化范围为0.2-0.48,且随粒径增大成先增大后减小的分布特征;气溶胶粒径在0.15-1.1 μm的强吸湿段,κ>0.3,而在粒径小于0.15 μm和粒径大于1.1 μm弱吸湿段,κκ分布不同,气溶胶粒子在小于1.1 μm的粒径段,当受西南气团影响时,κ值最大,而受东南气团影响时,κ值最小;在气溶胶粒径大于1.1 μm时,κ在两个气团背景下呈现与气溶胶粒径小于1.1 μm时相反的分布特征。影响粒径小于1.1 μm气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、水溶性有机碳(WSOC,water soluble organic carbon),而影响大于1.1 μm粒径范围气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、NO3-、WSOC和Ca2+。由气溶胶多尺度离子化学组分和WSOC构建的气溶胶κ的参数化方案,在小于1.1 μm和大于1.1 μm的粒径范围内的表达式分别为κreg=0.12+0.45fNH4++0.63fSO42-+0.18fWSOC和κreg=0.01+0.78fNH4++0.76fNO3-+0.8fSO42--0.28fCa2++0.14fWSOC(f为对应组分的质量份数)。两个参数化方案均能较好地预报κ,预报值κreg与κ的计算值间存在较好的相关关系,相关系数通过了置信度99%的显著性检验,且预报误差在30%范围内。

     

    Abstract: Based on analysis of the aerosol hygroscopic parameter (κ) and the aerosol ionic components observed in July 2014 in Huangshan Mountain, characteristics of the multi-size aerosol hygroscopic parameter (κ) was investigated and a parameterization scheme of κ was developed. Results indicate that the sampling site was mainly affected by southwesterly, northerly and southeasterly flows during the summer. The value of κ varies from 0.2 to 0.48, and it first increases and then decreases with the increase in the aerosol particle size. When the aerosol particle size is within the highly hygroscopic range of 0.15 to 1.1 μm, the κ value is greater than 0.3; when the aerosol particle size is within the range of less hygroscopic, the value of κ is smaller than 0.3. For those aerosol particles with a diameter Dpμm, the highest value of κ appears when influenced by southwesterly flow, and the lowest value appears when southeasterly flow is prevalent. The opposite is true for aerosol particles with a diameter Dp>1.1 μm. The main water-soluble chemical components of aerosol particles are NH4+, SO42- and WSOC, which affect the hygroscopicity of aerosol particles with a size smaller than 1.1 μm. NH4+, SO42-, NO3-, WSOC and Ca2+ are the main soluble chemical components that affect the hygroscopicity of aerosol particles with a size greater than 1.1 μm. The parametric equation of κ for aerosol particles with a size less than 1.1 μm is κreg=0.12+0.45fNH4++0.63fSO42-+0.18fWSOC, and the equation for aerosol particles with a size greater than 1.1 μm is κreg=0.01+0.78fNH4++0.76fNO3-+0.8fSO42--0.28fCa2++0.14fWSOC(f is the mass percentage of the corresponding component). Both equations can well predict the values of κ for multi-size aerosol particles, and the deviations of predicted values are less than 30%. The forecast values of κreg are highly correlated with calculated values of κ, and the correlation passes the significance test at the 99% confidence level.

     

/

返回文章
返回