王婉,雷恒池,聂皓浩,王兆宇,郭晓军. 2021. 基于机载微波辐射计探测大气水汽通道饱和问题研究. 气象学报,79(3):509-520. DOI: 10.11676/qxxb2021.027
引用本文: 王婉,雷恒池,聂皓浩,王兆宇,郭晓军. 2021. 基于机载微波辐射计探测大气水汽通道饱和问题研究. 气象学报,79(3):509-520. DOI: 10.11676/qxxb2021.027
Wang Wan, Lei Hengchi, Nie Haohao, Wang Zhaoyu, Guo Xiaojun. 2021. A study on channel saturation of atmospheric water vapor detection based on airborne microwave radiometer. Acta Meteorologica Sinica, 79(3):509-520. DOI: 10.11676/qxxb2021.027
Citation: Wang Wan, Lei Hengchi, Nie Haohao, Wang Zhaoyu, Guo Xiaojun. 2021. A study on channel saturation of atmospheric water vapor detection based on airborne microwave radiometer. Acta Meteorologica Sinica, 79(3):509-520. DOI: 10.11676/qxxb2021.027

基于机载微波辐射计探测大气水汽通道饱和问题研究

A study on channel saturation of atmospheric water vapor detection based on airborne microwave radiometer

  • 摘要: 183.31 GHz微波辐射计在探测低含量水汽时具有优势,但也存在通道饱和问题,定量研究该问题对明确该类型仪器探测水汽能力和适用范围具有重要意义。基于天津市人工影响天气办公室增雨飞机运-12搭载的183.31 GHz微波辐射计GVR(G-band water Vapor Radiometer),采用探空资料对该辐射计4个通道进行饱和问题研究,定量计算其饱和阈值及探测灵敏度,分析各通道水汽探测能力及适用范围。结果表明:机载微波辐射计4个通道水汽探测灵敏度及饱和阈值与观测高度有关,当水汽含量较低时,通道1((183±1)GHz)观测高度越高灵敏度越高,通道3((183±7)GHz)和通道4((183±14)GHz)观测高度越高灵敏度越低,通道2((183±3)GHz)灵敏度几乎不受观测高度影响,通道1和通道4观测高度越高积分水汽探测饱和阈值越小,观测高度越低饱和阈值越大,通道2和通道3饱和阈值几乎不受观测高度影响。晴空条件下选择水汽探测能力最强的单通道对积分水汽含量进行反演,当积分水汽含量处于0—1.3、1.3—4.0和4.0—9.8 mm时,分别选择通道1、通道2、通道3作为反演通道,不同观测高度的积分水汽含量反演均适用。云的发射作用使辐射计各通道亮温升高,亮温升高幅度与云液态水含量、云与观测高度的距离及云厚有关,云液态水含量越大,各通道水汽探测灵敏度及饱和阈值越小;云天条件下选择水汽探测能力最强的双通道对积分水汽含量进行反演,以液态水路径区间来选择合适的水汽探测通道,液态水含量越高,积分水汽可探测范围越小。要探测到0.1 mm的积分水汽含量变化,机载微波辐射计(GVR)在晴空条件下的水汽探测适用范围为0—9.8 mm,其探测能力在云天条件下减弱,水汽探测适用范围因云液态水含量不同而不同。

     

    Abstract: 183.31 GHz microwave radiometers have advantages in detecting low-content water vapor, yet they also have the problem of channel saturation. Quantitative research on this problem is of great significance to clarify the water vapor detection capability and application range of this type of instrument. Based on the airborne 183.31 GHz microwave radiometer GVR (G-band water Vapor Radiometer, GVR) aboard the precipitation enhancement aircraft Y-12 of the Tianjin Weather Modification Office, this study quantitatively calculates the saturation threshold of the four detection channels and detection sensitivity using the sounding data, and further analyzes the water vapor detection capability and application range of each channel. The results show that the water vapor detection sensitivity and saturation thresholds of the four channels are related to the observation height. When the water vapor content is low, the sensitivity of channel 1 ((183±1) GHz) increases with the increase of the observation height, the sensitivity of channel 3 ((183±7) GHz) and channel 4 ((183±14) GHz) decreases with the increase of the observation height, and the sensitivity of channel 2 ((183±3) GHz) is almost unaffected by the observation height. The higher the observation height of channel 1 and channel 4, the lower the saturation threshold of integrated water vapor detection. On the contrary, the lower the observation height, the greater the saturation threshold. The saturation thresholds of channel 2 and channel 3 are almost unaffected by observation height. The single channel with the strongest water vapor detection capability is selected to retrieve the integrated water vapor content under clear sky condition. When the integrated water vapor content is within 0—1.3, 1.3—4.0 and 4.0—9.8 mm, respectively, channel 1, channel 2 and channel 3 are selected as the retrieval channel correspondingly. The retrieval of integrated water vapor content at different observation heights is applicable. The emission of clouds increases the bright temperature of each channel of the radiometer. The range of bright temperature increase is related to the cloud liquid water content, the distance between the cloud and observation height and the cloud thickness. The greater the cloud liquid water content, the smaller the water vapor detection sensitivity and saturation threshold of each channel. Under cloudy condition, the two channels with the strongest water vapor detection capability are selected to retrieve the integrated water vapor content, and the appropriate water vapor detection channel is selected based on the integrated liquid water path interval. The greater the content of liquid water, the smaller the detectable range of integrated water vapor. To detect the variation of integrated water vapor content at 0.1 mm scale, the application range of airborne microwave radiometer for detecting integrated water vapor content is 0—9.8 mm under clear sky condition. The detection capability is weakened under cloudy condition, and the application range of water vapor detection varies with the cloud liquid water content.

     

/

返回文章
返回