留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云贵高原锋线的动态特征

宇如聪 李建 原韦华

宇如聪,李建,原韦华. 2021. 云贵高原锋线的动态特征. 气象学报,79(6):889-901 doi: 10.11676/qxxb2021.064
引用本文: 宇如聪,李建,原韦华. 2021. 云贵高原锋线的动态特征. 气象学报,79(6):889-901 doi: 10.11676/qxxb2021.064
Yu Rucong, Li Jian, Yuan Weihua. 2021. The moving characteristics of frontal lines on the Yunnan-Guizhou Plateau. Acta Meteorologica Sinica, 79(6):889-901 doi: 10.11676/qxxb2021.064
Citation: Yu Rucong, Li Jian, Yuan Weihua. 2021. The moving characteristics of frontal lines on the Yunnan-Guizhou Plateau. Acta Meteorologica Sinica, 79(6):889-901 doi: 10.11676/qxxb2021.064

云贵高原锋线的动态特征

doi: 10.11676/qxxb2021.064
基金项目: 国家重点研发计划项目(2018FYC1507603)
详细信息
    作者简介:

    宇如聪,主要从事云和降水特征及数值模式研发等方面研究。E-mail:yrc@cma.gov.cn

  • 中图分类号: P441

The moving characteristics of frontal lines on the Yunnan-Guizhou Plateau

  • 摘要: 面向精细化的气象服务需求,为做到对云贵高原锋面系统变化的精准把控,深入认知其动态演变规律,基于50 a(1971—2020年)逐日台站观测资料,提出了一种利用线性拟合近似判定云贵高原地面锋线的方法,并通过综合分析锋线位置和锋线周边气象要素的空间分布和时间变化特征以及长持续锋线事件的锋线位置、走向变化,系统揭示了云贵高原锋线的移动特征,展现了云贵高原准“静”止锋的“动”态特征。结果表明,冷性锋线集中在102.5°—105°E,最大降温区在锋线东侧,暖性锋线集中在104.5°—105.75°E,最大升温区位于锋线西侧;锋线附近气象要素的变化与锋线的移动紧密相关,西进的锋线一般会伴随锋线附近的降温、升压和日照减少,东退的锋线则相反;根据长持续锋线事件的连续演变过程,可将锋线事件区分为静止、西移和东移3类,静止型出现次数最多,西移型可连续快速推进并伴随锋线南部的顺时针摆动,东移型出现频次较低且移速相对较慢。上述结果通过对云贵高原锋线,特别是其动态特征的客观定量描述,为该地区在锋线影响下各气象要素的精细化预报提供了重要参考。

     

  • 图  1  中国西南部588个国家级地面气象站 (黑色和红色圆点均代表台站位置,虚线框出重点关注区域,红色圆点为重点关注区域内台站;色阶为地形高度,单位:100 m)

    Figure  1.  Locations of 588 weather stations over southwestern China (black and red dots represent the locations of stations, the region of focus is outlined by dashed lines and red dots denote stations inside the region of focus; the shading indicates the elevation,unit:100 m)

    图  2  (a) 云贵高原地区年平均气象要素空间分布和 (b、c) 2015年4月7日锋线判别示例 (图a色阶为日最高气温较前一日降幅超过5℃的年平均频次,黑色等值线为日最高气温相对于其旬平均的标准差,白色虚线等值线为年平均日最高气温,单位:℃;深粉色实线框标示重点关注区域。图b和图c色阶为地形高度;白色等值线为2015年4月7日14时位温分布,单位:K;黑色等值线为14时气温分布,单位:℃。图b红点为位温梯度超过12 K/(经/纬度)且气温梯度大于6℃/(经/纬度)的初选台站,浅蓝色实线为初选台站的拟合线。图c红点表示锋线站,浅蓝色实线为拟合锋线)

    Figure  2.  (a) Spatial distributions of annual means of meteorological elements over the Yunnan-Guizhou Plateau. (b,c) Example of the procedures to obtain the surface frontal line that occurred on 7 April 2015 (the shading in (a) shows the annual occurrence frequency of larger than 5℃ decrease of daily maximum temperature when compared with that of the day before (unit:times),black contours are standard deviations of daily maximum temperature relative to the dekad mean of the daily maximum temperature,white dashed contours indicate annual mean of daily maximum temperature (unit:℃),dark pink lines outline the focus region;the shadings in (b) and (c) indicate the elevation (unit:100 m),white contours are potential temperature at 14:00 BT 7 April 2015 (unit:K),black contours show temperature at 14:00 BT (unit:℃);red dots in (b) are stations with potential temperature gradient greater than 12 K per longitude/latitude and temperature gradient greater than 6℃ per longitude/latitude,the light blue line is the fitting line;red dots in (c) denote stations on the front line and the light blue line is the fitting front line)

    图  3  (a) 年平均锋面日数的逐旬变化和 (b) 年平均不同持续日数的锋线事件频次分布

    Figure  3.  (a) Dekad mean of annual frontal days and (b) annual mean of the numbers of frontal events with different durations

    图  4  (a) 4639 d锋面日合成的气象要素空间分布和 (b) 2016—2020年锋线分布 (色阶为锋面日中各台站被判定为锋线站的百分率,单位:%。图a中黑色等值线为锋面日的平均位温,单位:K;白色虚线等值线为锋面日的平均14时气温,单位:℃;深灰色矢量箭头表示锋面日平均风场,单位:m/s;深蓝色线段表示锋面日合成锋线;深粉色实线框标示重点关注区域。图b中深灰色细线表示锋线)

    Figure  4.  (a) Spatial distributions of meteorological elements composed by 4639 frontal days. (b) Frontal lines in 2016—2020 (gray lines)((a) and (b) The percentages of the days being a frontal station to total frontal days at each station (shading,unit:%). (a) Black contours are potential temperature averaged in frontal days (unit:K). White dashed contours are temperature at 14:00 BT averaged in frontal days (unit:℃). Gray vectors are surface winds averaged in frontal days (unit:m/s). Dark blue line is the composed frontal line. Dark pink lines outline the focus region)

    图  6  (a、b) 冷锋和 (c、d) 暖锋周边气象要素空间分布 (色阶为总冷锋 (暖锋) 日中各台站被判定为冷锋 (暖锋) 锋线站的比例,单位:%;深蓝色线段为冷锋 (暖锋) 合成锋线;深粉色实线框标示重点关注区域。图a、c黑色等值线分别为冷锋、暖锋锋面日合成位温,单位:K;白色等值线分别为冷锋、暖锋锋面日相较于其前一天14时气温的变化,单位:℃。图b、d黑色等值线、白色等值线以及灰色矢量箭头分别为冷锋、暖锋锋面日相较于其前一日气压 (单位:hPa)、日照 (单位:h) 以及风场 (单位:m/s)变化)

    Figure  6.  Spatial distributions of meteorological elements composed in (a,b) cold and (c,d) warm frontal days (the shading is the percentages of the days being a frontal station to total (a,b) cold and (c,d) warm frontal days at each station (unit:%);dark blue lines are the composed frontal line;dark pink lines outline the focus region;potential temperature (black contour,unit:K) and deviation of temperature at 14:00 BT of the frontal day to the day before(white dashed contour,unit:℃) averaged in (a) cold and (c) warm frontal days;deviation of daily mean surface pressure (black contour,unit:hPa),sunlight (white dashed contour,unit:h) and winds (gray vector,unit:m/s) of frontal day to the day before averaged in (b) cold and (d) warm frontal days)

    图  7  (a) 2016年12月25—26日锋线分布、移动(图a中色阶为地形高度,单位:100 m;白 (黑) 色等值线分别为25 (26) 日位温,单位:K;浅 (深) 蓝色线段为25 (26) 日锋线位置;锋线上红点标示锋线南端1/3处的位置;红线为26日相较于25日锋线移动距离)及 (b) 不同移动距离的锋线占总移动锋线的比例 (单位:%)

    Figure  7.  (a) The front lines on 25 (the light blue line) and 26 (the dark blue line) December 2016 (the potential temperature (unit:K) on 25 (the white contour) and 26 (the black contour);red dots are the 1/3 to the most south point of the front lines and red line represents the distance of the movement of the front line between the 25 and 26;the shading is the topography (unit:100 m)) and (b) percentages of the front lines with different moving distances to the total (unit:%)

    图  8  锋线移动距离与锋线附近 (a) 变温 (单位:℃)、(b)变压 (单位:hPa) 和 (c) 变日照 (单位:h) 的散点分布 (红色虚线表示移动为0,右下角标示移动距离与各气象要素变化的相关系数)

    Figure  8.  Scatter plots of the shifted degrees of front lines and the change of (a) temperature (unit:℃),(b) pressure (unit:hPa) and (c) sunlight time (unit:h)(red dashed lines represent zero,the correlation coefficients are given on the down right)

    图  9  持续7 d以上的锋线事件前7 d逐日合成的 (a) 斜率,(b) 锋线南端位置 (黑 (红) 线表示锋线南端纬 (经) 度变化),(c) 锋线的空间分布 (色阶为地形高度,单位:100 m;7条彩色线分别标示7日锋线的空间分布)

    Figure  9.  (a) The slope,(b) the southmost points (latitudes,the black line,longitudes,the red line) of the front lines in the first 7 days averaged for the frontal events lasting longer than 7 d and (c) spatial distribution of the frontal lines in the first 7 days composed in the frontal events lasting longer than 7 d and the topography (shading,unit:100 m)

    图  10  三类长持续锋线事件前7 d的 (a) 移动距离、(b) 与26°N相交的经度、(c) 变温 (单位:℃) 和 (d) 变日照 (单位:h) 的逐日演变 (蓝色表示西移型锋线事件,黑色表示静止型锋线事件,红色表示东移型锋线事件)

    Figure  10.  (a) The shifted Lon/Lat (°),(b) the longitude crossing 26°N,(c) temperature change (unit:℃) and (d) sunlight time change (unit:h) of the westward moving (blue line),the eastward moving (red line) and the stationary (black line) frontal lines in the first 7 days averaged in the frontal events lasting longer than 7 d

    图  11  (a) 静止型、(b) 西移型和 (c) 东移型持续性锋线事件前7 d逐日合成的锋线位置 (色阶为地形高度,单位:100 m)

    Figure  11.  Spatial distributions of the frontal lines in the first 7 d composed in the (a) stationary,(b) westward moving and (c) eastward moving frontal events lasting longer than 7 d (the shading is the topography,unit:100 m)

    图  12  (a) 2008年1月12日至2月14日锋线与26°N相交的经度,(b) 2008年2月15日14时温度和位温分布 (色阶为地形高度,单位:100 m;黑 (白) 色等值线表示温度 (位温),单位:℃ (K))

    Figure  12.  (a) The longitude crossing with 26°N for the frontal lines from 12 January to 14 February 2008, (b)the potential temperature (the white contour,unit:K) and temperature (the black contour,unit:℃) at 14:00 BT 15 February 2008 (the shading indicated the elevation,unit:100 m)

    表  1  持续不少于30 d的锋线事件

    Table  1.   Frontal events with duration equal to or longer than 30 d

    开始结束持续天数(d)
    1976年12月23日1977年1月21日30
    1984年1月15日1984年3月2日48
    1984年12月12日1985年1月16日36
    1988年2月8日1988年3月10日32
    1990年12月27日1991年1月30日35
    2008年1月12日2008年2月14日34
    2010年12月31日2011年2月4日36
    2011年12月17日2012年2月2日48
    2020年11月21日2020年12月20日30
    下载: 导出CSV
  • [1] 陈谋,陈辅平. 1984. 云贵暖锋的个例分析. 高原气象,3(3):97-101

    Chen M,Chen F P. 1984. Case analysis of the Yungui warm front. Plateau Meteor,3(3):97-101 (in Chinese)
    [2] 丁一汇,王遵娅,宋亚芳等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系. 气象学报,66(5):808-825

    Ding Y H,Wang Z Y,Song Y F,et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta Meteor Sinica,66(5):808-825 (in Chinese)
    [3] 杜小玲,高守亭,彭芳. 2014. 2011年初贵州持续低温雨雪冰冻天气成因研究. 大气科学,38(1):61-72 doi: 10.3878/j.issn.1006-9895.2013.12119

    Du X L,Gao S T,Peng F. 2014. Study of the 2011 freezing rain and snow storm in Guizhou. Chinese J Atmos Sci,38(1):61-72 (in Chinese) doi: 10.3878/j.issn.1006-9895.2013.12119
    [4] 杜正静. 2007. 滇黔准静止锋对贵州地区天气的影响[D]. 南京: 南京信息工程大学.

    Du Z J. 2007. The effect on weathers of Guizhou of quasi-stationary front over Yunnan and Guizhou Provinces[D]. Nanjing: Nanjing University of Information Science and Technology (in Chinese)
    [5] 杜正静,丁治英,张书余. 2007. 2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析. 热带气象学报,23(3):284-292 doi: 10.3969/j.issn.1004-4965.2007.03.011

    Du Z J,Ding Z Y,Zhang S Y. 2007. Analysis of atmospheric circulation and structure of Yunnan-Guizhou quasi-stationary front during its evolution. J Trop Meteor,23(3):284-292 (in Chinese) doi: 10.3969/j.issn.1004-4965.2007.03.011
    [6] 杜正静,何玉龙,熊方等. 2015. 滇黔准静止锋诱发贵州春季暴雨的锋生机制分析. 高原气象,34(2):357-367

    Du Z J,He Y L,Xiong F,et al. 2015. Analysis on the frontogenesis mechanism of Dian-Qian quasi-stationary front inducing spring rainstorm in Guizhou Province. Plateau Meteor,34(2):357-367 (in Chinese)
    [7] 段旭,李英,孙晓东. 2002. 昆明准静止锋结构. 高原气象,21(2):205-209 doi: 10.3321/j.issn:1000-0534.2002.02.014

    Duan X,Li Y,Sun X D. 2002. The structure of Kunming quasi-stationary front. Plateau Meteor,21(2):205-209 (in Chinese) doi: 10.3321/j.issn:1000-0534.2002.02.014
    [8] 段旭,段玮,邢冬. 2017. 昆明准静止锋客观判识方法研究. 气象学报,75(5):811-822

    Duan X,Duan W,Xing D. 2017. A study of objective determination method for the Kunming quasi-stationary frontline. Acta Meteor Sinica,75(5):811-822 (in Chinese)
    [9] 段旭,段玮,邢冬等. 2018. 冬春季昆明准静止锋与云贵高原地形的关系. 高原气象,37(1):137-147 doi: 10.7522/j.issn.1000-0534.2017.00032

    Duan X,Duan W,Xing D,et al. 2018. The relationship between Kunming quasi-stationary front and Yunnan-Guizhou Plateau terrain. Plateau Meteor,37(1):137-147 (in Chinese) doi: 10.7522/j.issn.1000-0534.2017.00032
    [10] 樊平. 1956. 昆明准静止锋. 天气月刊,6(S1):14-16

    Fan P. 1956. Kunming quasi-stationary front. J Weather,6(S1):14-16 (in Chinese)
    [11] 黄更生. 1984. 冬半年影响昆明地区的冷锋静止锋. 云南气象,(4):4-11

    Huang G S. 1984. The cold stationary front influencing Kunming in winter. Yunnan Meteor,(4):4-11 (in Chinese)
    [12] 李英,段旭,潘里娜. 1999. 昆明准静止锋的准地转Q矢量分析. 气象,25(8):6-10 doi: 10.3969/j.issn.1000-0526.1999.08.002

    Li Y,Duan X,Pan L N. 1999. A quasi-geostraphic Q-vector analysis of Kunming quasi-stationary front. Meteor Mon,25(8):6-10 (in Chinese) doi: 10.3969/j.issn.1000-0526.1999.08.002
    [13] 李英,舒智. 2000. 云南春季冰雹、大风天气的中尺度扰动特征. 气象,26(12):16-19 doi: 10.3969/j.issn.1000-0526.2000.12.004

    Li Y,Shu Z. 2000. The mesoscale disturbance features of high wind and hail event over Yunnan in spring. Meteor Mon,26(12):16-19 (in Chinese) doi: 10.3969/j.issn.1000-0526.2000.12.004
    [14] 罗四维. 1960. 高原上空大气环流的特点∥杨鉴初, 陶诗言, 叶笃正等. 西藏高原气象学. 北京: 科学出版社. Luo S W. 1960. The characteristics of air circulation over the Tibetan Plateau∥Yang J C, Tao S Y, Ye D Z, et al. Meteorology on the Tibetan Plateau. Beijing: Sciences Press (in Chinese)
    [15] 潘菊芳. 1953. 冬半年华南的准静止锋. 天气,(3):1-9

    Pan J F. 1953. The south china stationary front in winter. Weather,(3):1-9 (in Chinese)
    [16] 潘里娜,李英. 1999. 冬春季昆明准静止锋若干统计特征. 云南气象,(4):37-40

    Pan L N,Li Y. 1999. The statistical features of the Kunming quasi-stationary fronts in spring and winter. Yunnan Meteor,(4):37-40 (in Chinese)
    [17] 索渺清,丁一汇. 2016. 昆明准静止锋的发现和研究. 气象科技进展,6(3):6-16

    Suo M Q,Ding Y H. 2016. The discovery and study of Kunming quasi-stationary front. Adv Meteor Sci Technol,6(3):6-16 (in Chinese)
    [18] 陶祖钰,郑永光,张小玲. 2008. 2008年初冰雪灾害和华南准静止锋. 气象学报,66(5):850-854

    Tao Z Y,Zheng Y G,Zhang X L. 2008. Southern China quasi-stationary front during ice-snow disaster of January 2008. Acta Meteor Sinica,66(5):850-854 (in Chinese)
    [19] 许美玲, 段旭, 杞明辉等. 2011. 云南省天气预报员手册. 北京: 气象出版社.

    Xu M L, Duan X, Qi M H, et al. 2011. Weather Forecast Manual of Yunnan Province. Beijing: China Meteorological Press (in Chinese)
    [20] 徐裕华, 王宗德, 王明. 1991. 西南气候. 北京: 气象出版社.

    Xu Y H, Wang Z D, Wang M. 1991. Climate of Southwest China. Beijing: Cina Meteorological Press (in Chinese)
    [21] 杨贵名,毛冬艳,孔期. 2009. “低温雨雪冰冻”天气过程锋区特征分析. 气象学报,67(4):652-665

    Yang G M,Mao D Y,Kong Q. 2009. Analysis of the frontal characteristics of the cryogenic freezing rain and snow weather. Acta Meteor Sinica,67(4):652-665 (in Chinese)
    [22] 杨静,吴哲红,汪超等. 2018. 云贵准静止锋雾的中尺度环境场分析及短期预报着眼点. 中低纬山地气象,42(3):1-10 doi: 10.3969/j.issn.1003-6598.2018.03.001

    Yang J,Wu Z H,Wang C,et al. 2018. The meso-scale environment analysis and the forecast starting point of the Yunnan-Guizhou Quasi-stationary front fog. Mid-Low Latit Mountain Meteor,42(3):1-10 (in Chinese) doi: 10.3969/j.issn.1003-6598.2018.03.001
    [23] 尤红,曹中和,郭文华等. 2006. 昆明静止锋下的云南强倒春寒天气分析. 气象,32(3):56-62 doi: 10.3969/j.issn.1000-0526.2006.03.010

    You H,Cao Z H,Guo W H,et al. 2006. Analysis of Yunnan severe coldness in the late spring under Kunming quasi-stationary front. Meteor Mon,32(3):56-62 (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.03.010
    [24] 查书瑶,伊兰,赵平. 2015. 冬季华南准静止锋的结构和类型特征研究. 大气科学,39(2):513-525

    Zha S Y,Yi L,Zhao P. 2015. Structure and type characteristics of the winter quasi-stationary front in South China. Chinese J Atmos Sci,39(2):513-525 (in Chinese)
    [25] 张丙辰. 1947. 吾国西南之气团及准静止面. 科学,29(11):339

    Zhang B C. 1947. The air mass and quasi-stationary front over southwestern China. Science,29(11):339 (in Chinese)
    [26] 张精华,张万诚,郑建萌等. 2016. 1970—2009年冬季昆明准静止锋的变化特征及其影响分析. 高原气象,35(5):1298-1306 doi: 10.7522/j.issn.1000-0534.2015.00042

    Zhang J H,Zhang W C,Zheng J M,et al. 2016. Variation of Kunming quasi-stationary front and its effect analysis in winter during 1970—2009. Plateau Meteor,35(5):1298-1306 (in Chinese) doi: 10.7522/j.issn.1000-0534.2015.00042
    [27] 张腾飞,鲁亚斌,张杰等. 2006. 一次低纬高原地区大到暴雪天气过程的诊断分析. 高原气象,25(4):696-703 doi: 10.3321/j.issn:1000-0534.2006.04.018

    Zhang T F,Lu Y B,Zhang J,et al. 2006. Diagnostic analysis of a heavy snowstorm processe in lower latitude plateau of China. Plateau Meteor,25(4):696-703 (in Chinese) doi: 10.3321/j.issn:1000-0534.2006.04.018
    [28] 张亚男,段旭. 2018. 冬季1月昆明准静止锋进退及维持的结构特征. 高原气象,37(5):1375-1387

    Zhang Y N,Duan X. 2018. Structural characteristics of the advance, retreat and maintenance of Kunming quasi-stationary front in January. Plateau Meteor,37(5):1375-1387 (in Chinese)
    [29] Egger J,Tao Z Y. 1992. A note on the dynamics of the quasi-stationary Kunming front. Meteorol Atmos Phys,48(1):225-229
    [30] Zhao D,Yang R W,Tao Y,et al. 2019. Objective detection of the Kunming quasi-stationary front. Theor Appl Climatol,138(3):1405-1418
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  18
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-09-02
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2021-12-27

目录

    /

    返回文章
    返回