留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征

王婧羽 崔春光 陈杨瑞雪 王晓芳

王婧羽,崔春光,陈杨瑞雪,王晓芳. 2022. 西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征. 气象学报,80(1):1-18 doi: 10.11676/qxxb2022.006
引用本文: 王婧羽,崔春光,陈杨瑞雪,王晓芳. 2022. 西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征. 气象学报,80(1):1-18 doi: 10.11676/qxxb2022.006
Wang Jingyu, Cui Chunguang, Chen Yangruixue, Wang Xiaofang. 2022. Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May-August. Acta Meteorologica Sinica, 80(1):1-18 doi: 10.11676/qxxb2022.006
Citation: Wang Jingyu, Cui Chunguang, Chen Yangruixue, Wang Xiaofang. 2022. Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May-August. Acta Meteorologica Sinica, 80(1):1-18 doi: 10.11676/qxxb2022.006

西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征

doi: 10.11676/qxxb2022.006
基金项目: 国家重点研发计划专项(2018YFC1507202),国家自然科学基金(41975058,41705019),湖北省气象局科技发展基金(2020Y04)
详细信息
    作者简介:

    王婧羽,工程师,主要从事暴雨机理研究。E-mail:amywang060@163.com

  • 中图分类号:  

Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May-August

  • 摘要: 利用逐小时的风云静止卫星TBB资料和国家级地面站降水观测,根据中尺度对流系统(MCS)的逐时云顶覆盖范围是否包含突发性暴雨事件,识别出2010—2018年5—8月与中国西南山区突发性暴雨事件相关的中尺度对流系统(AHR-MCS),并得到其统计特征。结果表明,该地区AHR-MCS在7月出现最频繁,存在四川盆地(SR-A)、湖南西部(SR-B)、广西北部(SR-C)和贵州西南部(SR-D)四个不连续的频发区。经向扰动环流、整层水汽通量的异常辐合、低层更强的暖湿气流及其引起的偏强对流层低层垂直风切变(6—8月)是AHR-MCS出现和维持的有利条件。AHR-MCS是西南山区内生命史更长的那部分中尺度对流系统,主要移动方向偏东,但位置偏西(东)的SR-A、SR-D(SR-B、SR-C)频发区域内向东偏南(东偏北)方向移动的更多。成熟时,SR-A的发展高度更低,面积更小,SR-B和SR-C的云顶面积更大而SR-D则云顶高度更高。AHR-MCS的日变化呈现明显的单峰结构,夜间20-23时(北京时)达到峰值,其中生命史越长的生成(成熟)峰值出现时间越晚。对于不同频发区,SR-A和SR-D也是单峰结构,但由于受大地形的热力影响前者生成(成熟)峰值明显晚于后者6(8)个小时;其余两个区域则呈现多峰结构。AHR-MCS对应的最大小时降水更易出现在发展阶段,与最低TBB出现的时间对应关系更好,早于成熟时;位置则多分布在相对于对流云团形心的第I、III象限;不仅容易出现在TBB低值区(低于−51℃)还常出现在TBB的梯度大值区(超过0.4℃/km),且两者占比相当。

     

  • 图  1  研究区域及国家级地面观测站 (红色圆点) 分布 (色阶:地形高度,单位:m)

    Figure  1.  Research region. Color shaded: terrain height (units: m). Red dots: spatial distribution of national rain gauges. Dark grey lines: boundaries of provinces (the same hereafter). Blue lines: part of the Yangtze River and the Yellow River (the same hereafter).

    图  2  2010—2018年5—8月西南山区AHR-MCS生成数量的年际分布 (a) 和月分布 (b)

    Figure  2.  Interannual (a) and intraseasonal (b) frequency distributions of AHR-MCSs over Southwest China during May-August of 2010—2018

    图  3  2010—2018年5—8月西南山区中尺度对流系统 (a)、AHR-MCS (b) 及其逐月 (c—f) 生成位置的空间分布 (灰色阴影:地形高度,单位:m;黑色数字和彩色方格:中尺度对流系统形心在1°×1°经纬格距内的生成数量;红色实线方框及其中红色“A—D”:根据AHR-MCS具体的形心位置划分的4个中尺度对流系统频发区域)

    Figure  3.  Spatial distributions of onset locations of MCSs (a),all AHR-MCSs (b) and AHR-MCSs in May-August of 2010—2018 (c—f) over Southwest China (Grey shading: terrain elevation,unit:m;Black numbers and color squares:onset numbers of MCSs over 1°×1° box; Red solid boxes with red "A—D":the 4 subregions where AHR-MCSs more frequently occur according to their onset locations)

    图  4  2010—2018年逐月的 (a—d) AHR-MCS伴随降水时合成天气形势与月平均的差值场 (棕色等值线:500 hPa位势高度差,单位:gpm;黑色箭头:700 hPa风矢量差,单位:m/s;色阶:整层水汽通量差值的散度大小,单位:10−2g/(m2·s);黑色“C”:700 hPa风矢量差的气旋性中心) 和 (e—h) AHR-MCS合成大尺度环境条件的异常分布 (红色实线:700 hPa假相当位温的差值,单位:K;色阶:地面至700 hPa高度风垂直切变的差值,单位:m/s)(绿色实线:地形高于3000 m的青藏高原区域;黑色长虚线方框:研究区域;黑色实线方框:AHR-MCS的频发子区域)

    Figure  4.  Monthly anomalies (a—d) between composite circulation of AHR-MCS associated with rain and monthly average during 2010—2018 (Brown contour: differences in geopotential height at 500 hPa,unit:gpm; Black vector:differences in wind at 700 hPa,unit:m/s; Color shading: divergence anomaly of vertically integrated water vapor flux,unit: 10−2g/(m−2·s); Black "C":the center of abnormal winds at 700 hPa), and monthly anomalies (e—h) between composite environment situation of AHR-MCSs associated with rain and monthly average during 2010—2018 (Red contours: differences in ${\theta _{{\text{se}}}}$at 700 hPa,unit:K; Color shading:differences in vertical wind shear magnitude between surface and 700 hPa,unit:m/s)(the green line denotes the area of Tibetan Plateau with elevation above 3000 m;black dashed box stands for the whole research region;black solid boxes show the 4 subregions)

    4.  Continued

    图  5  西南山区不同生命史AHR-MCS占中尺度对流系统的比例分布 (蓝色柱状,纵坐标:左) 以及生成于4个子区域内不同生命史AHR-MCS的频次分布 (彩色折线,纵坐标:右)

    Figure  5.  Percentages of MCSs accounted for by AHR-MCSs with different lifespans (blue bars,y axis: left) and frequencies of AHR-MCSs with different lifespans over 4 subregions (color lines,y axis: right) over Southwest China

    图  6  中尺度对流系统 (a)、AHR-MCS (b) 和生成于4个子区域内AHR-MCS (c—f) 的移动方向

    Figure  6.  Movement directions of MCSs (a),AHR-MCSs occurring over the whole research region (b) and 4 subregions (c—f)

    图  7  生成于西南山区4个子区域内的AHR-MCS成熟时的特征分布 (a.成熟时的云顶面积 (单位:105 km2),b. 成熟时云顶平均TBB (单位:℃),c. 成熟时最低TBB (单位:℃),d. 成熟时偏心率 (长短轴之比);所有箱图中“+”表示异常值,“•”表示平均值,箱中的横线表示中位数)

    Figure  7.  Box and whisker plots of (a) the cloud area (unit:105 km2),(b) mean TBB (unit:℃),(c) min TBB (unit:℃),and (d) minor-major ratio over the 4 subregions of Southwest China ( “+” denotes outliers,“•” stands for the mean,the line in the middle of the box means the median)

    图  8  2010—2018年5—8月西南山区AHR-MCS生成时 (a) 及成熟时 (b) 在一天中出现频次最高时段的空间分布 (灰阶:地形高度,单位:m;填色:一天内在1°×1°经纬格距内AHR-MCS出现频次最多的时段;白色数字:出现频次最高时段的AHR-MCS在格距内所占比例,单位:%)

    Figure  8.  Spatial distributions of the most frequent period of the day for AHR-MCSs onset (a) and mature (b) in May-August of 2010—2018 (Grey shading: terrain elevation,unit: m;Color shading: the period of the day when AHR-MCSs occur most frequently over 1°×1° boxes; White numbers:frequency of AHR-MCS numbers within the period of highest frequency relative to all MCS numbers in each box,unit:%)

    图  9  生成于西南山区 (a,其中AHR-MCS的频次坐标轴为右纵轴,不同生命史的占比为左纵轴) 及其中4个子区域(b—e)不同生命史 (不同颜色) 的AHR-MCS生成 (实线)、成熟 (长虚线) 时间出现频次的日变化分布

    Figure  9.  Diurnal variations of the onset (solid lines) and mature (dash lines) frequency of the AHR-MCSs over Southwest China (a,right y axis shows the frequency of AHR-MCSs and the frequency of AHR-MCSs with different lifespans relative to all AHR-MCSs) in 4 subregions (b—e)

    9.  Continued

    图  10  2010—2018年5—8月生成于西南山区4个子区域内的AHR-MCS成熟时 (a)、最低TBB出现时 (b) 与最大降水出现时间差异的频率 (白色斜杠覆盖区域表示生命史为1 h的AHR-MCS所占比例)

    Figure  10.  Relative frequencies of differences between the time of the mature (a),minimum TBB (b) and maximum hourly rainfall when the AHR-MCSs occur over the 4 subregions (The white translucent regions denote the proportion of the AHR-MCSs with 1-hour lifespan)

    图  11  4个子区域的AHR-MCS在最低TBB与最大降水出现时间相同时相对云团形心覆盖的最大降水站点数量 (色阶)、位置及相应700 hPa合成风场的分布特征 (a—d) 以及出现在AHR-MCS云团不同象限的降水站点所对应的TBB (e,单位:℃) 和TBB梯度 (f,单位:℃/km)(箱线图中尾端加号表征有异常值,方盒中间的实心圆点表示平均值,实线表示中位数)

    Figure  11.  Relative positions between the rain gauges (shaded patches),composite winds at 700 hPa (black vectors,unit:m/s) and the cloud centroids of the AHR-MCSs over the 4 subregions (a—d) when the maximum rain occur at the same time of the minimum TBB occurrence;The box and whisker plots of TBB (e,unit:℃) and TBB gradient (f,unit:℃/km) of rainy positions covered by different quadrants of the cloud (In all box plots,“+”means the outliers,“•” stands for the mean,line in the middle of box means the median)

    表  1  依据TBB识别西南山区中尺度对流系统的具体标准及其生命史规定

    Table  1.   Criteria for MCS classification according to TBB data and rules of their life spans

    依据描述
    尺度TBB≤−32℃的云顶面积必须≥5000 km2
    生命史满足尺度条件的持续时间不设限
    形状面积最大时的偏心率不设限
    生成第一次满足尺度条件且位于研究区域内
    成熟TBB≤−32℃的云顶面积达到最大时
    消亡不满足尺度条件或云团形心移出研究区域
    下载: 导出CSV

    表  2  西南山区所有以及不同生命史的中尺度对流系统和AHR-MCS成熟时的平均特征以及生命史特征

    Table  2.   The lifespans and average characteristics of MCSs and AHR-MCSs at mature stage over Southwest China

    MCSAHR-MCS
    1 h2—5 h6—11 h≥12 h1 h2—5 h6—11 h≥12 h
    云顶面积(105 km20.60.50.60.91.22.43.42.21.61.6
    平均TBB(℃)−42.4−41.0−43.2−45.8−46.9−48.1−47.5−48.1−49.0−48.2
    最低TBB(℃)−55.3−52.6−56.8−62.8−65.7−70.3−71.3−69.8−70.4−69.1
    偏心率0.490.470.510.540.560.490.460.490.520.55
    持续时间(h)2.51.02.97.614.84.31.03.17.915.4
    生成—成熟时段(h)2.62.04.48.03.92.35.39.0
    成熟—消亡时段(h)1.50.93.26.81.90.82.66.4
    成熟与最低TBB的时间差(h)0.60.41.22.91.00.41.43.5
    下载: 导出CSV
  • [1] 方翀,郑永光,林隐静等. 2014. 导致区域性雷暴大风天气的云型分类及统计特征分析. 气象,40(8):905-915

    Fang C,Zheng Y G,Lin Y J,et al. 2014. Classification and characteristics of cloud patterns triggering regional thunderstorm high winds. Meteor Mon,40(8):905-915 (in Chinese)
    [2] 胡明宝. 2015. 风廓线雷达探测与应用. 北京:气象出版社,151pp

    Hu M B. 2015. Wind Profiler Radar Detection and Application. Beijing:China Meteorological Press,151pp (in Chinese)
    [3] 胡祖恒,李国平,官昌贵等. 2014. 中尺度对流系统影响西南低涡持续性暴雨的诊断分析. 高原气象,33(1):116-129 doi: 10.7522/j.issn.1000-0534.2013.00002

    Hu Z H,Li G P,Guan C G,et al. 2014. Diagnostic analysis of mesoscale convective systems influence on sustained rainstorm caused by Southwest Vortex. Plateau Meteor,33(1):116-129 (in Chinese) doi: 10.7522/j.issn.1000-0534.2013.00002
    [4] 江吉喜,项续康,范梅珠. 1996. 青藏高原夏季中尺度强对流系统的时空分布. 应用气象学报,7(4):473-478

    Jiang J X,Xiang X K,Fan M Z. 1996. The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer. Quart J Appl Meteor,7(4):473-478 (in Chinese)
    [5] 刘瑞翔,丁治英,孙凌光等. 2015. 夏季江淮地区中尺度对流系统的统计特征分析. 暴雨灾害,34(3):215-222

    Liu R X,Ding Z Y,Sun L G,et al. 2015. Statistical analysis of mesoscale convective systems over Yangtze-Huaihe basin in summer. Torrential Rain Disaster,34(3):215-222 (in Chinese)
    [6] 马禹,王旭,陶祖钰. 1997. 中国及其邻近地区中尺度对流系统的普查和时空分布特征. 自然科学进展,7(6):701-706 doi: 10.3321/j.issn:1002-008X.1997.06.010

    Ma Y,Wang X,Tao Z Y. 1997. The general investigation and spatial and temporal distribution of mesoscale convective systems in China and its adjacent areas. Prog Nat Sci,7(6):701-706 (in Chinese) doi: 10.3321/j.issn:1002-008X.1997.06.010
    [7] 麦子,傅慎明,孙建华. 2020. 近16年暖季青藏高原东部两类中尺度对流系统(MCS)的统计特征. 气候与环境研究,25(4):385-398 doi: 10.3878/j.issn.1006-9585.2019.19040

    Mai Z,Fu S M,Sun J H. 2020. Statistical features of two types of Mesoscale Convective Systems (MCSs) generated over the eastern Tibetan Plateau during 16 consecutive warm seasons. Climatic Environ Res,25(4):385-398 (in Chinese) doi: 10.3878/j.issn.1006-9585.2019.19040
    [8] 祁秀香,郑永光. 2009. 2007年夏季川渝与江淮流域MCS分布与日变化特征. 气象,35(11):17-28,162 doi: 10.7519/j.issn.1000-0526.2009.11.003

    Qi X X,Zheng Y G. 2009. Distribution and diurnal variations of the MCS over Sichuan-Chongqing area and Yangtze-Huaihe River basin during the summer of 2007. Meteor Mon,35(11):17-28,162 (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.11.003
    [9] 石定朴,朱文琴,王洪庆等. 1996. 中尺度对流系统红外云图云顶黑体温度的分析. 气象学报,54(5):600-611

    Shi D B,Zhu W Q,Wang H Q,et al. 1996. Cloud top blackbody temperature analysis of infrared Satellite image for mesoscale convective system. Acta Meteor Sinica,54(5):600-611 (in Chinese)
    [10] 唐延婧,胡跃文,谢清霞. 2014. 滇黔静止锋大暴雨的锋面特征及其对MCS的影响. 气象科技,42(1):151-157 doi: 10.3969/j.issn.1671-6345.2014.01.025

    Tang Y J,Hu Y W,Xie Q X. 2014. Frontal-characteristic of a heavy rainstorm induced by Yunnan-Guizhou stationary front and effects on mesoscale systems. Meteor Sci Technol,42(1):151-157 (in Chinese) doi: 10.3969/j.issn.1671-6345.2014.01.025
    [11] 陶诗言. 1980. 中国之暴雨. 北京:科学出版社,4-35

    Tao S Y. 1980. Heavy Rainfalls in China. Beijing:Science Press,4-35 (in Chinese)
    [12] 陶祖钰,王洪庆,王旭等. 1998. 1995年中国的中-α尺度对流系统. 气象学报,56(2):166-177

    Tao Z Y,Wang H Q,Wang X,et al. 1998. A survey of meso-α-scale convective systems over China during 1995. Acta Meteor Sinica,56(2):166-177 (in Chinese)
    [13] 王婧羽,王晓芳,汪小康等. 2019. 青藏高原云团东传过程及其中中尺度对流系统的统计特征. 大气科学,43(5):1019-1040

    Wang J Y,Wang X F,Wang X K,et al. 2019. Statistical characteristics of eastward propagation of cloud clusters from the Tibetan Plateau and mesoscale convective systems embedded in these cloud clusters. Chinese J Atmos Sci,43(5):1019-1040 (in Chinese)
    [14] 伍荣生. 1999. 现代天气学原理. 北京:高等教育出版社,211-214,260

    Wu R S. 1999. Principles of Modern Synoptic Meteorology. Beijing:Higher Education Press,211-214,260 (in Chinese)
    [15] 项续康,江吉喜. 1995. 我国南方地区的中尺度对流复合体. 应用气象学报,6(1):9-17

    Xiang X K,Jiang J X. 1995. Mesoscale convective complexes over the southern China mainland. Quart J Appl Meteor,6(1):9-17 (in Chinese)
    [16] 徐祥德,陈联寿. 2006. 青藏高原大气科学试验研究进展. 应用气象学报,17(6):756-772 doi: 10.3969/j.issn.1001-7313.2006.06.013

    Xu X D,Chen L S. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences. J Appl Meteor Sci,17(6):756-772 (in Chinese) doi: 10.3969/j.issn.1001-7313.2006.06.013
    [17] 喻谦花,郑士林,吴蓁等. 2016. 局部大暴雨形成的机理与中尺度分析. 气象,42(6):686-695 doi: 10.7519/j.issn.1000-0526.2016.06.004

    Yu Q H,Zheng S L,Wu Z,et al. 2016. The forming mechanism and mesoscale analysis of local heavy rainfall. Meteor Mon,42(6):686-695 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.06.004
    [18] 宇如聪,李建,陈昊明等. 2014. 中国大陆降水日变化研究进展. 气象学报,72(5):948-968

    Yu R C,Li J,Chen H M,et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China. Acta Meteor Sinica,72(5):948-968 (in Chinese)
    [19] 俞小鼎. 2013. 短时强降水临近预报的思路与方法. 暴雨灾害,32(3):202-209

    Yu X D. 2013. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disaster,32(3):202-209 (in Chinese)
    [20] 赵洋洋,张庆红,杜宇等. 2013. 北京“7.21”特大暴雨环流形势极端性客观分析. 气象学报,71(5):817-824

    Zhao Y Y,Zhang Q H,Du Y,et al. 2013. Objective analysis of the extreme of circulation patterns during the 21 July 2012 torrential rain event in Beijing. Acta Meteor Sinica,71(5):817-824 (in Chinese)
    [21] 郑永光,陶祖钰,王洪庆. 2002. 黄海及周边地区α中尺度对流系统发生的环境条件. 气象学报,60(5):613-619

    Lee D K,Wee T K,Oh J H. 2002. Environment of meso α-scale convective system development in Yellow Sea region. Acta Meteor Sinica,60(5):613-619 (in Chinese)
    [22] 郑永光, 陈炯, 朱佩君. 2008. 中国及周边地区夏季中尺度对流系统分布及其日变化特征. 科学通报, 53(4): 471-481. Zheng Y G, Chen J, Zhu P J. 2008. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer. Chinese Science Bulletin, 53(10): 1574-1586
    [23] 郑永光,林隐静,朱文剑等. 2013. 强对流天气综合监测业务系统建设. 气象,39(2):234-240 doi: 10.7519/j.issn.1000-0526.2013.02.013

    Zheng Y G,Lin Y J,Zhu W J,et al. 2013. Operational system of severe convective weather comprehensive monitoring. Meteor Mon,39(2):234-240 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.02.013
    [24] 卓鸿,姚秀萍,郑永光等. 2004. 黄河下游春季一次MαCS暴雨过程的综合分析. 气象学报,62(4):504-511

    Zhuo H,Yao X P,Zheng Y G,et al. 2004. The synthetical analysis of a spring MαCS heavy rain in the lower reaches of the Yellow River. Acta Meteor Sinica,62(4):504-511 (in Chinese)
    [25] Arnaud Y,Desbois M,Maizi J. 1992. Automatic tracking and characterization of African convective systems on Meteosat pictures. J Appl Meteor,31(5):443-453 doi: 10.1175/1520-0450(1992)031<0443:ATACOA>2.0.CO;2
    [26] Chen Y R X,Wang X F,Huang L,et al. 2021. Spatial and temporal characteristics of abrupt heavy rainfall events over Southwest China during 1981-2017. Int J Climatol,41(5):3286-3299 doi: 10.1002/joc.7019
    [27] Fang Z Y. 1985. The preliminary syudy of medium-scale cloud clusters over the Changjiang basin in summer. Adv Atmos Sci,2(3):334-340 doi: 10.1007/BF02677249
    [28] He Z W,Zhang Q H,Bai L Q,et al. 2017. Characteristics of mesoscale convective systems in central East China and their reliance on atmospheric circulation patterns. Int J Climatol,37(7):3276-3290 doi: 10.1002/joc.4917
    [29] Hu L,Deng D F,Gao S T,et al. 2016. The seasonal variation of Tibetan convective systems:Satellite observation. J Geophys Res,121(10):5512-5525 doi: 10.1002/2015JD024390
    [30] Hu L,Deng D F,Xu X D,et al. 2017. The regional differences of Tibetan convective systems in boreal summer. J Geophys Res,122(14):7289-7299 doi: 10.1002/2017JD026681
    [31] Huang H L,Wang C C,Chen G T J,et al. 2010. The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau. Mon Wea Rev,138(7):2975-2989 doi: 10.1175/2010MWR3225.1
    [32] Jirak I L,Cotton W R,McAnelly R L. 2003. Satellite and radar survey of mesoscale convective system development. Mon Wea Rev,131(10):2428-2449 doi: 10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
    [33] Luo Y L,Wu M W,Ren F M,et al. 2016. Synoptic situations of extreme hourly precipitation over China. J Climate,29(24):8703-8719 doi: 10.1175/JCLI-D-16-0057.1
    [34] Maddox R A. 1980. Mesoscale convective complexes. Bull Amer Meteor Soc,61(11):1374-1387 doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [35] Mai Z,Fu S M,Sun J H,et al. 2021. Key statistical characteristics of the mesoscale convective systems generated over the Tibetan Plateau and their relationship to precipitation and southwest vortices. Int J Climatol,41(S1):E875-E896 doi: 10.1002/joc.6735
    [36] Markowski P,Richardson Y. 2010. Mesoscale Meteorology in Midlatitude. Hoboken:John Wiley & Sons,Ltd:245,201
    [37] Mathon V,Laurent H. 2001. Life cycle of Sahelian mesoscale convective cloud systems. Quart J Roy Meteor Soc,127(572):377-406 doi: 10.1002/qj.49712757208
    [38] Yang X R,Fei J F,Huang X G,et al. 2015. Characteristics of mesoscale convective systems over China and its vicinity using Geostationary Satellite FY2. J Climate,28(12):4890-4907 doi: 10.1175/JCLI-D-14-00491.1
    [39] Yu R C,Zhou T J,Xiong A Y,et al. 2007. Diurnal variations of summer precipitation over contiguous China. Geophys Res Lett,34(1):L01704 doi: 10.1029/2006gl028129
    [40] Zhang Y H,Xue M,Zhu K E,et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin,China? The key role of boundary layer low-level jet inertial oscillations. J Geophys Res,124(5):2643-2664 doi: 10.1029/2018JD029834
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  12
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-10-26

目录

    /

    返回文章
    返回