留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征

王婧羽 崔春光 陈杨瑞雪 王晓芳

王婧羽,崔春光,陈杨瑞雪,王晓芳. 2022. 西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征. 气象学报,80(1):21-38 doi: 10.11676/qxxb2022.006
引用本文: 王婧羽,崔春光,陈杨瑞雪,王晓芳. 2022. 西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征. 气象学报,80(1):21-38 doi: 10.11676/qxxb2022.006
Wang Jingyu, Cui Chunguang, Chen Yangruixue, Wang Xiaofang. 2022. Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May—August. Acta Meteorologica Sinica, 80(1):21-38 doi: 10.11676/qxxb2022.006
Citation: Wang Jingyu, Cui Chunguang, Chen Yangruixue, Wang Xiaofang. 2022. Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May—August. Acta Meteorologica Sinica, 80(1):21-38 doi: 10.11676/qxxb2022.006

西南山区5—8月产生突发性暴雨事件的中尺度对流系统的时空分布特征

doi: 10.11676/qxxb2022.006
详细信息
    作者简介:

    王婧羽,主要从事暴雨机理研究。E-mail:amywang060@163.com

  • 中图分类号:  P458.1+21.1

Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May—August

  • 摘要: 利用逐时的风云静止卫星黑体亮温(TBB)资料和国家级地面站降水观测资料,根据中尺度对流系统(MCS)的逐时云顶覆盖范围是否包含突发性暴雨事件,识别出2010—2018年5—8月与中国西南山区突发性暴雨事件相关的中尺度对流系统(AHR-MCS),并得到其统计特征。结果表明,该地区AHR-MCS在7月出现最频繁,存在四川盆地(SR-A)、湖南西部(SR-B)、广西北部(SR-C)和贵州西南部(SR-D)4个不连续的频发区。经向扰动环流、整层水汽通量的异常辐合、低层更强的暖湿气流及其引起的偏强对流层低层风垂直切变(6—8月)是AHR-MCS出现和维持的有利条件。AHR-MCS是西南山区内生命期更长的那部分中尺度对流系统,主要移动方向偏东,但位置偏西(东)的SR-A、SR-D(SR-B、SR-C)频发区域内向东偏南(东偏北)方向移动得更多。成熟时,SR-A的发展高度更低,面积更小,SR-B和SR-C的云顶面积更大而SR-D则云顶高度更高。AHR-MCS的日变化呈现明显的单峰结构,20—23时(北京时)达到峰值,其中生命期越长的生成(成熟)峰值出现时间越晚。对于不同频发区,SR-A和SR-D也是单峰结构,但由于受大地形的热力影响前者生成(成熟)峰值明显晚于后者6(8) h;其余两个区域则呈现多峰结构。AHR-MCS对应的最大小时降水更易出现在发展阶段,与最低TBB出现的时间对应关系更好,早于成熟时;位置则多分布在相对于对流云团形心的第Ⅰ、Ⅲ象限;不仅容易出现在TBB低值区(低于−51℃)还常出现在TBB的梯度大值区(超过0.4℃/km),且两者占比相当。

     

  • 图 1  研究区域及国家级地面观测站 (红色圆点) 分布 (色阶:地形高度,单位:m)

    Figure 1.  Research region (color shaded:terrain height,unit:m;red dots:spatial distribution of national rain gauges)

    图 2  2010—2018年5—8月西南山区AHR-MCS生成数量的年际分布 (a) 和月分布 (b)

    Figure 2.  Interannual (a) and monthly (b) frequency distributions of AHR-MCSs over Southwest China during May—August of 2010—2018

    图 3  2010—2018年5—8月西南山区中尺度对流系统 (a)、AHR-MCS (b) 及其逐月 (c—f) 生成位置的空间分布 (黑色数字和彩色方格:中尺度对流系统形心在1°×1°经纬格距内的生成数量;红色实线方框及其中红色“A—D”:根据AHR-MCS具体的形心位置划分的4个中尺度对流系统频发区域)

    Figure 3.  Spatial distributions of onset locations of MCSs (a),all AHR-MCSs (b) and AHR-MCSs in May—August (c—f) of 2010—2018 over Southwest China (black numbers and color squares:onset numbers of MCSs over 1°×1° box; red solid boxes with red "A—D":the 4 subregions where AHR-MCSs more frequentlyoccur according to their onset locations)

    图 4  2010—2018年逐月的 (a—d) AHR-MCS伴随降水时合成天气形势与月平均的差值场 (棕色等值线:500 hPa位势高度差,单位:gpm;黑色箭头:700 hPa风矢量差,单位:m/s;色阶:整层水汽通量差值的散度大小,单位:10−2g/(m2·s);黑色“C”:700 hPa风矢量差的气旋性中心) 和 (e—h) AHR-MCS合成大尺度环境条件的异常分布 (红色实线:700 hPa假相当位温的差值,单位:K;色阶:地面至700 hPa高度风垂直切变的差值,单位:m/s)(绿色实线:地形高于3000 m的青藏高原区域;黑色长虚线方框:研究区域;黑色实线方框:AHR-MCS的频发子区域)

    Figure 4.  Monthly anomalies (a—d) between composite circulation of AHR-MCS associated with rain and monthly average during 2010—2018 (brown contour:differences in geopotential height at 500 hPa,unit:gpm; black vector:differences in wind at 700 hPa,unit:m/s; color shading: divergence anomaly of vertically integrated water vapor flux,unit: 10−2g/(m2·s); black "C":the center of abnormal winds at 700 hPa), and monthly anomalies (e—h) between composite environment situation of AHR-MCSs associated with rain and monthly average during 2010—2018 (red contours: differences in ${\theta _{{\text{se}}}}$ at 700 hPa,unit:K; color shading:differences in vertical wind shear magnitude between surface and 700 hPa,unit:m/s)(the green line denotes the area of Tibetan Plateau with elevation above 3000 m;black dashed box stands for the whole research region;black solid boxes show the 4 subregions)

    Continued

    图 5  西南山区不同生命期AHR-MCS占中尺度对流系统的比例分布 (蓝色柱状,纵坐标:左) 以及生成于4个子区域内不同生命期AHR-MCS的频次分布 (彩色折线,纵坐标:右)

    Figure 5.  Percentages of MCSs accounted for by AHR-MCSs with different lifespans (blue bars,y axis: left) and frequencies of AHR-MCSs with different lifespans over 4 subregions (color lines,y axis: right) over Southwest China

    图 6  中尺度对流系统 (a)、AHR-MCS (b) 和生成于4个子区域内AHR-MCS (c—f) 的移动方向

    Figure 6.  Movement directions of MCSs (a),AHR-MCSs occurring over the whole research region (b) and 4 subregions (c—f)

    图 7  生成于西南山区4个子区域内的AHR-MCS成熟时的特征分布 (a.成熟时的云顶面积 (单位:105 km2),b. 成熟时云顶平均TBB (单位:℃),c. 成熟时最低TBB (单位:℃),d. 成熟时偏心率 (长短轴之比);所有箱图中“+”表示异常值,“•”表示平均值,箱中的横线表示中位数)

    Figure 7.  Box-plots of (a) the cloud area (unit:105 km2),(b) mean TBB (unit:℃),(c) min TBB (unit:℃),and (d) minor-major ratio over the 4 subregions of Southwest China ( "+" denotes outliers,"•" stands for the mean, the line in the middle of the box means the median)

    图 8  2010—2018年5—8月西南山区AHR-MCS生成时 (a) 及成熟时 (b) 在一天中出现频次最高时段的空间分布 (填色:一天内在1°×1°经纬格距内AHR-MCS出现频次最多的时段;白色数字:出现频次最高时段的AHR-MCS在格距内所占比例,单位:%)

    Figure 8.  Spatial distributions of the most frequent period of the day for AHR-MCSs onset (a) and mature (b) in May—August of 2010—2018 (color shading:the period of the day when AHR-MCSs occur most frequently over 1°×1° boxes; white numbers:frequency of AHR-MCS numbers within the period of highest frequency relative to all MCS numbers in each box,unit:%)

    图 9  生成于西南山区 (a,AHR-MCS的频次坐标轴为右纵轴,不同生命期的占比为左纵轴) 及其中4个子区域(b—e)不同生命期(不同颜色) 的AHR-MCS生成 (实线)、成熟 (长虚线) 时间出现频次的日变化分布

    Figure 9.  Diurnal variations of the onset (solid lines) and mature (dash lines) frequency of the AHR-MCSs over Southwest China (a,right y axis shows the frequency of AHR-MCSs and left y axis showsthe frequency of AHR-MCSs with different lifespans relative to all AHR-MCSs) in 4 subregions (b—e)

    Continued

    图 10  2010—2018年5—8月生成于西南山区4个子区域内的AHR-MCS成熟时 (a)、最低TBB出现时 (b) 与最大降水出现时间差异的频率 (白色斜杠覆盖区域表示生命期为1 h的AHR-MCS所占比例)

    Figure 10.  Relative frequencies of differences between the time of the mature (a),minimum TBB (b) and maximum hourly rainfall when the AHR-MCSs occur over the 4 subregions (The white slashes regions denote the proportion of the AHR-MCSs with 1-hour lifespan)

    图 11  4个子区域的AHR-MCS在最低TBB与最大降水出现时间相同时相对云团形心覆盖的最大降水站点数量 (色阶)、位置及相应700 hPa合成风场的分布特征 (a—d) 以及出现在AHR-MCS云团不同象限的降水站点所对应的TBB (e,单位:℃) 和TBB梯度 (f,单位:℃/km)箱线图(箱线尾端加号表征有异常值,方盒中间的实心圆点表示平均值,实线表示中位数)

    Figure 11.  Relative positions between the rain gauges (shaded patches),composite winds at 700 hPa (black vectors,unit:m/s) and the cloud centroids of the AHR-MCSs over the 4 subregions (a—d) when the maximum rain occur at the same time of the minimum TBB occurrence;The box and whisker plots of TBB (e,unit:℃) and TBB gradient (f,unit:℃/km) of rainy positions covered by different quadrants of the cloud (In all box-plots,"+" means the outliers,"•" stands for the mean,line in the middle of box means the median)

    Continued

    表  1  依据TBB识别西南山区中尺度对流系统的具体标准及其生命期规定

    Table  1.   Criteria for MCS classification according to TBB data and rules of their life spans

    依据描述
    尺度 TBB≤−32℃的云顶面积必须≥5000 km2
    生命期满足尺度条件的持续时间不设限
    形状 面积最大时的偏心率不设限
    生成 第一次满足尺度条件且位于研究区域内
    成熟 TBB≤−32℃的云顶面积达到最大时
    消亡 不满足尺度条件或云团形心移出研究区域
    下载: 导出CSV

    表  2  西南山区所有以及不同生命期的中尺度对流系统和AHR-MCS成熟时的平均特征以及生命期特征

    Table  2.   The lifespans and average characteristics of MCSs and AHR-MCSs at mature stage over Southwest China

    MCSAHR-MCS
    1 h2—5 h6—11 h≥12 h1 h2—5 h6—11 h≥12 h
    云顶面积(105 km20.60.50.60.91.22.43.42.21.61.6
    平均TBB(℃)−42.4−41.0−43.2−45.8−46.9−48.1−47.5−48.1−49.0−48.2
    最低TBB(℃)−55.3−52.6−56.8−62.8−65.7−70.3−71.3−69.8−70.4−69.1
    偏心率0.490.470.510.540.560.490.460.490.520.55
    持续时间(h)2.51.02.97.614.84.31.03.17.915.4
    生成—成熟时段(h)2.62.04.48.03.92.35.39.0
    成熟—消亡时段(h)1.50.93.26.81.90.82.66.4
    成熟与最低TBB的时间差(h)0.60.41.22.91.00.41.43.5
    下载: 导出CSV
  • [1] 方翀,郑永光,林隐静等. 2014. 导致区域性雷暴大风天气的云型分类及统计特征分析. 气象,40(8):905-915

    Fang C,Zheng Y G,Lin Y J,et al. 2014. Classification and characteristics of cloud patterns triggering regional thunderstorm high winds. Meteor Mon,40(8):905-915 (in Chinese)
    [2] 胡明宝. 2015. 风廓线雷达探测与应用. 北京:气象出版社,151pp

    Hu M B. 2015. Wind Profiler Radar Detection and Application. Beijing:China Meteorological Press,151pp (in Chinese)
    [3] 胡祖恒,李国平,官昌贵等. 2014. 中尺度对流系统影响西南低涡持续性暴雨的诊断分析. 高原气象,33(1):116-129 doi: 10.7522/j.issn.1000-0534.2013.00002

    Hu Z H,Li G P,Guan C G,et al. 2014. Diagnostic analysis of mesoscale convective systems influence on sustained rainstorm caused by Southwest Vortex. Plateau Meteor,33(1):116-129 (in Chinese) doi: 10.7522/j.issn.1000-0534.2013.00002
    [4] 江吉喜,项续康,范梅珠. 1996. 青藏高原夏季中尺度强对流系统的时空分布. 应用气象学报,7(4):473-478

    Jiang J X,Xiang X K,Fan M Z. 1996. The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer. Quart J Appl Meteor,7(4):473-478 (in Chinese)
    [5] 刘瑞翔,丁治英,孙凌光等. 2015. 夏季江淮地区中尺度对流系统的统计特征分析. 暴雨灾害,34(3):215-222

    Liu R X,Ding Z Y,Sun L G,et al. 2015. Statistical analysis of mesoscale convective systems over Yangtze-Huaihe basin in summer. Torrential Rain Disaster,34(3):215-222 (in Chinese)
    [6] 马禹,王旭,陶祖钰. 1997. 中国及其邻近地区中尺度对流系统的普查和时空分布特征. 自然科学进展,7(6):701-706 doi: 10.3321/j.issn:1002-008X.1997.06.010

    Ma Y,Wang X,Tao Z Y. 1997. The general investigation and spatial and temporal distribution of mesoscale convective systems in China and its adjacent areas. Prog Nat Sci,7(6):701-706 (in Chinese) doi: 10.3321/j.issn:1002-008X.1997.06.010
    [7] 麦子,傅慎明,孙建华. 2020. 近16年暖季青藏高原东部两类中尺度对流系统(MCS)的统计特征. 气候与环境研究,25(4):385-398 doi: 10.3878/j.issn.1006-9585.2019.19040

    Mai Z,Fu S M,Sun J H. 2020. Statistical features of two types of Mesoscale Convective Systems (MCSs) generated over the eastern Tibetan Plateau during 16 consecutive warm seasons. Climatic Environ Res,25(4):385-398 (in Chinese) doi: 10.3878/j.issn.1006-9585.2019.19040
    [8] 祁秀香,郑永光. 2009. 2007年夏季川渝与江淮流域MCS分布与日变化特征. 气象,35(11):17-28 doi: 10.7519/j.issn.1000-0526.2009.11.003

    Qi X X,Zheng Y G. 2009. Distribution and diurnal variations of the MCS over Sichuan-Chongqing area and Yangtze-Huaihe River basin during the summer of 2007. Meteor Mon,35(11):17-28 (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.11.003
    [9] 石定朴,朱文琴,王洪庆等. 1996. 中尺度对流系统红外云图云顶黑体温度的分析. 气象学报,54(5):600-611

    Shi D B,Zhu W Q,Wang H Q,et al. 1996. Cloud top blackbody temperature analysis of infrared Satellite image for mesoscale convective system. Acta Meteor Sinica,54(5):600-611 (in Chinese)
    [10] 唐延婧,胡跃文,谢清霞. 2014. 滇黔静止锋大暴雨的锋面特征及其对MCS的影响. 气象科技,42(1):151-157 doi: 10.3969/j.issn.1671-6345.2014.01.025

    Tang Y J,Hu Y W,Xie Q X. 2014. Frontal-characteristic of a heavy rainstorm induced by Yunnan-Guizhou stationary front and effects on mesoscale systems. Meteor Sci Technol,42(1):151-157 (in Chinese) doi: 10.3969/j.issn.1671-6345.2014.01.025
    [11] 陶诗言. 1980. 中国之暴雨. 北京:科学出版社,4-35

    Tao S Y. 1980. Heavy Rainfalls in China. Beijing:Science Press,4-35 (in Chinese)
    [12] 陶祖钰,王洪庆,王旭等. 1998. 1995年中国的中-α尺度对流系统. 气象学报,56(2):166-177

    Tao Z Y,Wang H Q,Wang X,et al. 1998. A survey of meso-α-scale convective systems over China during 1995. Acta Meteor Sinica,56(2):166-177 (in Chinese)
    [13] 王婧羽,王晓芳,汪小康等. 2019. 青藏高原云团东传过程及其中中尺度对流系统的统计特征. 大气科学,43(5):1019-1040

    Wang J Y,Wang X F,Wang X K,et al. 2019. Statistical characteristics of eastward propagation of cloud clusters from the Tibetan Plateau and mesoscale convective systems embedded in these cloud clusters. Chinese J Atmos Sci,43(5):1019-1040 (in Chinese)
    [14] 伍荣生. 1999. 现代天气学原理. 北京:高等教育出版社,211-214,260

    Wu R S. 1999. Principles of Modern Synoptic Meteorology. Beijing:Higher Education Press,211-214,260 (in Chinese)
    [15] 项续康,江吉喜. 1995. 我国南方地区的中尺度对流复合体. 应用气象学报,6(1):9-17

    Xiang X K,Jiang J X. 1995. Mesoscale convective complexes over the southern China mainland. Quart J Appl Meteor,6(1):9-17 (in Chinese)
    [16] 徐祥德,陈联寿. 2006. 青藏高原大气科学试验研究进展. 应用气象学报,17(6):756-772 doi: 10.3969/j.issn.1001-7313.2006.06.013

    Xu X D,Chen L S. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences. J Appl Meteor Sci,17(6):756-772 (in Chinese) doi: 10.3969/j.issn.1001-7313.2006.06.013
    [17] 喻谦花,郑士林,吴蓁等. 2016. 局部大暴雨形成的机理与中尺度分析. 气象,42(6):686-695 doi: 10.7519/j.issn.1000-0526.2016.06.004

    Yu Q H,Zheng S L,Wu Z,et al. 2016. The forming mechanism and mesoscale analysis of local heavy rainfall. Meteor Mon,42(6):686-695 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.06.004
    [18] 宇如聪,李建,陈昊明等. 2014. 中国大陆降水日变化研究进展. 气象学报,72(5):948-968

    Yu R C,Li J,Chen H M,et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China. Acta Meteor Sinica,72(5):948-968 (in Chinese)
    [19] 俞小鼎. 2013. 短时强降水临近预报的思路与方法. 暴雨灾害,32(3):202-209

    Yu X D. 2013. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disaster,32(3):202-209 (in Chinese)
    [20] 赵洋洋,张庆红,杜宇等. 2013. 北京“7.21”特大暴雨环流形势极端性客观分析. 气象学报,71(5):817-824

    Zhao Y Y,Zhang Q H,Du Y,et al. 2013. Objective analysis of the extreme of circulation patterns during the 21 July 2012 torrential rain event in Beijing. Acta Meteor Sinica,71(5):817-824 (in Chinese)
    [21] 郑永光,陶祖钰,王洪庆. 2002. 黄海及周边地区α中尺度对流系统发生的环境条件. 气象学报,60(5):613-619

    Lee D K,Wee T K,Oh J H. 2002. Environment of meso α-scale convective system development in Yellow Sea region. Acta Meteor Sinica,60(5):613-619 (in Chinese)
    [22] 郑永光, 陈炯, 朱佩君. 2008. 中国及周边地区夏季中尺度对流系统分布及其日变化特征. 科学通报, 53(4): 471-481. Zheng Y G, Chen J, Zhu P J. 2008. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer. Chinese Sci Bull, 53(10): 1574-1586
    [23] 郑永光,林隐静,朱文剑等. 2013. 强对流天气综合监测业务系统建设. 气象,39(2):234-240 doi: 10.7519/j.issn.1000-0526.2013.02.013

    Zheng Y G,Lin Y J,Zhu W J,et al. 2013. Operational system of severe convective weather comprehensive monitoring. Meteor Mon,39(2):234-240 (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.02.013
    [24] 卓鸿,姚秀萍,郑永光等. 2004. 黄河下游春季一次MαCS暴雨过程的综合分析. 气象学报,62(4):504-511

    Zhuo H,Yao X P,Zheng Y G,et al. 2004. The synthetical analysis of a spring MαCS heavy rain in the lower reaches of the Yellow River. Acta Meteor Sinica,62(4):504-511 (in Chinese)
    [25] Arnaud Y,Desbois M,Maizi J. 1992. Automatic tracking and characterization of African convective systems on Meteosat pictures. J Appl Meteor,31(5):443-453 doi: 10.1175/1520-0450(1992)031<0443:ATACOA>2.0.CO;2
    [26] Chen Y R X,Wang X F,Huang L,et al. 2021. Spatial and temporal characteristics of abrupt heavy rainfall events over Southwest China during 1981-2017. Int J Climatol,41(5):3286-3299 doi: 10.1002/joc.7019
    [27] Fang Z Y. 1985. The preliminary syudy of medium-scale cloud clusters over the Changjiang basin in summer. Adv Atmos Sci,2(3):334-340 doi: 10.1007/BF02677249
    [28] He Z W,Zhang Q H,Bai L Q,et al. 2017. Characteristics of mesoscale convective systems in central East China and their reliance on atmospheric circulation patterns. Int J Climatol,37(7):3276-3290 doi: 10.1002/joc.4917
    [29] Hu L,Deng D F,Gao S T,et al. 2016. The seasonal variation of Tibetan convective systems:Satellite observation. J Geophys Res,121(10):5512-5525 doi: 10.1002/2015JD024390
    [30] Hu L,Deng D F,Xu X D,et al. 2017. The regional differences of Tibetan convective systems in boreal summer. J Geophys Res,122(14):7289-7299 doi: 10.1002/2017JD026681
    [31] Huang H L,Wang C C,Chen G T J,et al. 2010. The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau. Mon Wea Rev,138(7):2975-2989 doi: 10.1175/2010MWR3225.1
    [32] Jirak I L,Cotton W R,McAnelly R L. 2003. Satellite and radar survey of mesoscale convective system development. Mon Wea Rev,131(10):2428-2449 doi: 10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
    [33] Luo Y L,Wu M W,Ren F M,et al. 2016. Synoptic situations of extreme hourly precipitation over China. J Climate,29(24):8703-8719 doi: 10.1175/JCLI-D-16-0057.1
    [34] Maddox R A. 1980. Mesoscale convective complexes. Bull Amer Meteor Soc,61(11):1374-1387 doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [35] Mai Z,Fu S M,Sun J H,et al. 2021. Key statistical characteristics of the mesoscale convective systems generated over the Tibetan Plateau and their relationship to precipitation and southwest vortices. Int J Climatol,41(S1):E875-E896 doi: 10.1002/joc.6735
    [36] Markowski P,Richardson Y. 2010. Mesoscale Meteorology in Midlatitude. Hoboken:John Wiley & Sons,Ltd:245,201
    [37] Mathon V,Laurent H. 2001. Life cycle of Sahelian mesoscale convective cloud systems. Quart J Roy Meteor Soc,127(572):377-406 doi: 10.1002/qj.49712757208
    [38] Yang X R,Fei J F,Huang X G,et al. 2015. Characteristics of mesoscale convective systems over China and its vicinity using Geostationary Satellite FY2. J Climate,28(12):4890-4907 doi: 10.1175/JCLI-D-14-00491.1
    [39] Yu R C,Zhou T J,Xiong A Y,et al. 2007. Diurnal variations of summer precipitation over contiguous China. Geophys Res Lett,34(1):L01704 doi: 10.1029/2006gl028129
    [40] Zhang Y H,Xue M,Zhu K E,et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin,China? The key role of boundary layer low-level jet inertial oscillations. J Geophys Res,124(5):2643-2664 doi: 10.1029/2018JD029834
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  56
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2022-02-26

目录

    /

    返回文章
    返回