留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球风云三号D星MERSI/NDVI产品质量评估

王圆圆 李贵才

王圆圆,李贵才. 2022. 全球风云三号D星MERSI/NDVI产品质量评估. 气象学报,80(1):1-13 doi: 10.11676/qxxb2022.007
引用本文: 王圆圆,李贵才. 2022. 全球风云三号D星MERSI/NDVI产品质量评估. 气象学报,80(1):1-13 doi: 10.11676/qxxb2022.007
Wang Yuanyuan, Li Guicai. 2022. Assessment of FY-3D MERSI/NDVI global product. Acta Meteorologica Sinica, 80(1):1-13 doi: 10.11676/qxxb2022.007
Citation: Wang Yuanyuan, Li Guicai. 2022. Assessment of FY-3D MERSI/NDVI global product. Acta Meteorologica Sinica, 80(1):1-13 doi: 10.11676/qxxb2022.007

全球风云三号D星MERSI/NDVI产品质量评估

doi: 10.11676/qxxb2022.007
基金项目: 国家重点研发计划项目(2018YFC1506501、2018YFC1506605)
详细信息
    作者简介:

    王圆圆,主要从事植被遥感产品研发及产品验证研究。E-mail:wangyuany@cma.gov.cn

  • 中图分类号: P407

Assessment of FY-3D MERSI/NDVI global product

  • 摘要: MERSI/NDVI是风云三号D星的一个关键业务产品,深入了解其质量状况对推广产品应用、改进产品算法都具有重要意义。文中针对业务化运行后的全球MERSI/NDVI产品(2019年5月至2020年12月),以同期Terra MODIS/NDVI产品(MOD13A2)为参考,通过空间格局和时间序列的对比、APU(准确度Accuracy,精密度Precision,不确定性Uncertainty)指标计算以及回归分析等手段,评估MERSI/NDVI数据质量和可用性。结果显示,MERSI/NDVI和MODIS/NDVI在空间分布和时序特征方面具有较高一致性,但MERSI/NDVI有对高值低估、低值高估的倾向,故动态范围略窄;在全球平均水平上,MERSI/NDVI比MODIS/NDVI系统性偏低0.02—0,PU值为0.06—0.08,MERSI/NDVI与MODIS/NDVI的差别由小到大的顺序大致为:裸土荒漠、稀疏灌丛和草地、密闭灌丛与农田、除常绿阔叶林以外的森林、常绿阔叶林;以MODIS/NDVI为自变量、MERSI/NDVI为因变量的线性回归模型精度较高(R2:0.91—0.95,RMSE:0.048—0.068),回归系数具有一定的时间变化(斜率:0.87—0.94,截距:0.02—0.04)。本研究是首次对风云三号D星MERSI/NDVI产品开展近乎全样本的对比检验,证明该产品基本可以替代MODIS/NDVI在全球开展物候信息提取、植被长势监测等应用。

     

  • 图  1  FY-3D/MERSI和TERRA/MODIS的红光、近红外光谱响应函数对比

    Figure  1.  SRF comparison for red and NIR channels between FY-3D/MERSI and TERRA/MODIS

    图  2  MODIS/NDVI(a1—d1)和MERSI/NDVI(a2—d2)在不同季的空间格局对比 (a. 春,b. 夏,c. 秋,d. 冬)

    Figure  2.  Spatial pattern comparisons between MERSI/NDVI (a1—d1) and MODIS/NDVI (a2—d2) for different seasons (a. Spring,b. Summer,c. Autumn,d. Winter)

    图  3  MODIS/NDVI和MERSI/NDVI在不同季节的差值概率分布 (a. 春,b. 夏,c. 秋,d. 冬)

    Figure  3.  Histograms of NDVI difference (MERSI/NDVI−MODIS/NDVI) for different seasons (a. Spring,b. Summer,c. Autumn,d. Winter)

    图  4  MODIS/NDVI和MERSI/NDVI在不同季节的散点图 (a. 春,b. 夏,c. 秋,d. 冬)

    Figure  4.  Scatterplots of MERSI/NDVI and MODIS/NDVI for different seasons (a. Spring,b. Summer,c. Autumn,d. Winter)

    图  5  不同纬度带的NDVI均值时间序列对比 (2019年第161天至2020年第321天)

    Figure  5.  NDVI time series comparison for different latitudes(DOY161 in 2019 to DOY321 in 2020)

    图  6  不同土地覆盖类型的NDVI时间序列对比 (2019年第161天至2020年第321天)

    Figure  6.  NDVI time series comparisons for different land cover types (DOY161 in 2019 to DOY321 in 2020)

    图  7  APU分布以及统计时样本个数

    Figure  7.  Spatial patterns of the APU

    图  8  APU随土地覆盖类型的变化特征 (1:常绿针叶林,2:常绿阔叶林,3:落叶针叶林,4:落叶阔叶林,5:混交林,6:密闭灌丛,7:开放灌丛,8:木质稀树草原,9:稀树草原,10:草地,12:农田,14:农田和自然交错,16:荒漠/裸地)

    Figure  8.  Averaged APU for different land cover types (1: Evergreen ,needleleaf forest,2: Evergreen broadleaf forest,3: Deciduous needleleaf forest, 4: Deciduous broadleaf forest,5: Mixed forests, 6: Closed shrublands,7: Open shrublands,8: Woody savannas, 9: Savannas, 10: Ggrasslands, 12: Croplands,14: Cropland/Natural vegetation mosaic, 16: Barren or sparsely vegetated)

    图  9  APU随时间的变化 (2019年第161天至2020年第321天)

    Figure  9.  Temporal evolution of global-mean APU (DOY161 in 2019 to DOY321 in 2020)

    图  10  APU随NDVI的变化特征

    Figure  10.  The relationship between APU and NDVI

    图  11  RMA回归斜率、截距、RMSE和R2随时间的变化特征 (2019年第161天至2020年第321天)

    Figure  11.  RMA regression slopes,intercepts,RMSE and R2 (DOY161 in 2019 to DOY321 in 2020)

    图  12  红光和近红外反射率的差异造成的NDVI差异 (MERSI−MODIS)

    Figure  12.  NDVI differences attributed to red reflectance differences and NIR reflectance differences,respectively

    图  13  不同覆盖度条件下的植被光谱反射率 (Lu,et al,2021

    Figure  13.  Influence of canopy green vegetation fraction on spectral reflectance (Lu,et al,2021

  • [1] Bevington P R, Robinson D K. 2003. Data Reduction and Error Analysis for the Physical Sciences. Boston: McGraw-Hill
    [2] Brown M E,Pinzón J E,Didan K,et al. 2006. Evaluation of the consistency of long-term NDVI time series derived from AVHRR,SPOT-vegetation,SeaWiFS,MODIS,and landsat ETM+ sensors. IEEE Trans Geosci Remote Sens,44(7):1787-1793 doi: 10.1109/TGRS.2005.860205
    [3] Carter C, Chen M, Jiang Z, et al., 2020. (STAR) NOAA NESDIS STAR VIIRS VI algorithm theoretical basis document. Version: 2.0. https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_VIIRS_VI_v2.0.pdf
    [4] Didan K, Munoz A B, Solano R, et al. 2015a. MODIS vegetation index user's guide (MOD13 series) version 3.00. https://lpdaac.usgs.gov/documents/103/MOD13_User_Guide_V6.pdf
    [5] Didan K, Munoz A B, Miura T, et al. 2015b. Multi-sensor vegetation index and phenology earth science data records: Algorithm theoretical basis document and user guide, Version 4.0. Vegetation Index and Phenology Lab, University of Arizona. https://lpdaac.usgs.gov/documents/178/VIP_User_Guide_ATBD_V4.pdf
    [6] Didan K, Munoz A, Comptom T, et al. 2018. Suomi national polar-orbiting partnership visible infrared imaging radiometer suite vegetation index product suite user guide & abridged algorithm theoretical basis document version 2.1.2. https://viirsland.gsfc.nasa.gov/PDF/SNPP_VIIRS_VI_UserGuide_09-26-2017_KDidan.pdf
    [7] Fan X W,Liu Y B. 2016. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J Photogramm Remote Sens,121:177-191 doi: 10.1016/j.isprsjprs.2016.09.008
    [8] Fensholt R. 2004. Earth observation of vegetation status in the Sahelian and Sudanian West Africa:Comparison of Terra MODIS and NOAA AVHRR satellite data. Int J Remote Sens,25(9):1641-1659 doi: 10.1080/01431160310001598999
    [9] Fensholt R,Nielsen T S,Stisen S. 2006. Evaluation of AVHRR PAL and GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data for the African continent. Int J Remote Sens,27(13):2719-2733 doi: 10.1080/01431160600567761
    [10] Gallo K,Ji L,Reed B,et al. 2004. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data. Geophys Res Lett,31(7):L07502
    [11] Gallo K,Ji L,Reed B,et al. 2005. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens Environ,99(3):221-231 doi: 10.1016/j.rse.2005.08.014
    [12] Han X Z,Yang J,Tang S H,et al. 2020. Vegetation products derived from Fengyun-3D medium resolution spectral imager-Ⅱ. J Meteor Res,34(4):775-785 doi: 10.1007/s13351-020-0027-5
    [13] Huete A,Didan K,Miura T,et al. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ,83(1-2):195-213 doi: 10.1016/S0034-4257(02)00096-2
    [14] Ji L,Gallo K,Eidenshink J C,et al. 2008. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets. Int J Remote Sens,29(16):4839-4861 doi: 10.1080/01431160801927194
    [15] Jiang Z, Huete A, Wang Y, et al. 2011. Evaluation of MODIS VI Products using the AERONET-based surface reflectance validation network dataset∥34th International Symposium on Remote Sensing of Environment. Sydney, Australia, 10-15 April 2011. https://www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00786.pdf
    [16] Lu J S,Li W Y,Yu M L,et al. 2021. Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precis Agric,22(1):51-74 doi: 10.1007/s11119-020-09729-z
    [17] Marshall M,Okuto E,Kang Y,et al. 2016. Global assessment of vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products. Biogeosciences,13(3):625-639 doi: 10.5194/bg-13-625-2016
    [18] Miura T,Huete A R,Yoshioka H. 2000. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans Geosci Remote Sens,38(3):1399-1409 doi: 10.1109/36.843034
    [19] Miura T,Turner J P,Huete A R. 2013. Spectral compatibility of the NDVI across VIIRS,MODIS,and AVHRR:An analysis of atmospheric effects using EO-1 Hyperion. IEEE Trans Geosci Remote Sens,51(3):1349-1359 doi: 10.1109/TGRS.2012.2224118
    [20] Miura T,Muratsuchi J,Vargas M. 2018. Assessment of cross-sensor vegetation index compatibility between VIIRS and MODIS using near-coincident observations. J Appl Remote Sens,12(4):045004 doi: 10.1117/1.JRS.12.045004
    [21] Nagol J R,Vermote E F,Prince S D. 2009. Effects of atmospheric variation on AVHRR NDVI data. Remote Sens Environ,113(2):392-397 doi: 10.1016/j.rse.2008.10.007
    [22] Shabanov N,Vargas M,Miura T,et al. 2015. Evaluation of the performance of Suomi NPP VIIRS top of canopy vegetation indices over AERONET sites. Remote Sens Environ,162:29-44 doi: 10.1016/j.rse.2015.02.004
    [23] Skakun S,Justice C O,Vermote E,et al. 2018. Transitioning from MODIS to VIIRS:An analysis of inter-consistency of NDVI data sets for agricultural monitoring. Int J Remote Sens,39(4):971-992 doi: 10.1080/01431161.2017.1395970
    [24] Swinnen E,Veroustraete F. 2008. Extending the SPOT-VEGETATION NDVI time series (1998-2006) back in time with NOAA-AVHRR data (1985-1998) for Southern Africa. IEEE Trans Geosci Remote Sens,46(2):558-572 doi: 10.1109/TGRS.2007.909948
    [25] Trishchenko A P,Cihlar J,Li Z Q. 2002. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens Environ,81(1):1-18 doi: 10.1016/S0034-4257(01)00328-5
    [26] Tucker C J,Pinzon J E,Brown M E,et al. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens,26(20):4485-4498 doi: 10.1080/01431160500168686
    [27] van Leeuwen W J D,Orr B J,Marsh S E,et al. 2006. Multi-sensor NDVI data continuity:Uncertainties and implications for vegetation monitoring applications. Remote Sens Environ,100(1):67-81 doi: 10.1016/j.rse.2005.10.002
    [28] Vargas M,Miura T,Shabanov N,et al. 2013. An initial assessment of Suomi NPP VIIRS vegetation index EDR. J Geophys Res,118(22):12301-12316 doi: 10.1002/2013JD020439
    [29] Xu N,Niu X H,Hu X Q,et al. 2018. Prelaunch calibration and radiometric performance of the advanced MERSI Ⅱ on FengYun-3D. IEEE Trans Geosci Remote Sens,56(8):4866-4875 doi: 10.1109/TGRS.2018.2841827
    [30] Yang Z D,Zhang P,Gu S Y,et al. 2019. Capability of Fengyun-3D satellite in earth system observation. J Meteor Res,33(6):1113-1130 doi: 10.1007/s13351-019-9063-4
  • 加载中
图(13)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  9
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 录用日期:  2021-12-24
  • 修回日期:  2021-10-22
  • 网络出版日期:  2021-11-01

目录

    /

    返回文章
    返回