A study on vertical structure and macro- to micro-characteristics and differences of precipitation in Sichuan basin and the surrounding areas
-
摘要: 为进一步认识地形对降水的影响,利用2014年3月—2020年12月全球降水测量卫星(GPM)星载双频雷达(DPR)探测资料研究了四川盆地(C1)及邻近山地(C2)和高原东坡(C3)降水的垂直结构及宏微观特征和差异。结果表明:(1)GPM/DPR与地面雨滴谱仪的测量结果有较好的一致性。(2)降水样本总数为C1>C3>C2,层性云降水频次远高于对流云降水。(3)两类降水的降水顶高度均为C3>C2>C1。层性云降水,C1能够发展到最强,垂直厚度最大、雨滴谱最宽。降水顶向下,回波强度、雨滴谱和降水强度均增大。0℃层以上,C3回波增强最快;0℃层以下,C1回波达到最强,降水强度增强最快。(4)对于对流云降水,C2和C3弱对流的回波较强、垂直尺度较大,粒径较小而数浓度较高。C1强对流的回波较强、垂直尺度较大,大粒子数浓度更高。降水顶往下,回波强度和降水强度均增强,降水强度廓线斜率最大的地区从C2转为C1,至近地面前斜率均为0。粒径和数浓度变化较复杂,C1以凝结和碰并占主导,C2和C3的凝结和碰并、蒸发和破碎都重要。(5)当近地面产生较小降水强度时,粒子的增长多发生在降水顶以下0.5—2 km;随后蒸发和破碎效应增强,尤其是C1。当近地面降水强度进一步增强时,凝结和碰并作用占主导。Abstract: To advance the understanding of terrain influences on precipitation physics, the GPM space-borne dual-frequency radar (DPR) products collected from March 2014 to December 2020 are used to study the differences and characteristics of precipitation vertical structure and macro- to micro-parameters in three different sub-regions, including the Sichuan basin (C1, the region with altitudes smaller than 1 km), its surrounding mountains (C2, the mountainous region surrounding C1 with altitudes greater than 1 km but smaller than 3.5 km) and the plateau region (C3, the eastern slope region of the Tibetan Plateau with altitudes greater than 3.5 km). Results indicate that: (1) Validation of GPM/DPR data indicate that they agree well with surface disdrometer measurements. (2) Total numbers of precipitation samples in the three subregions are C1>C3>C2, and stratiform precipitation in all the three sub-regions shows a much higher frequency than the convective precipitation. (3) For stratiform and convective precipitation, the rain top height indicates that C3>C2>C1. For stratiform precipitation, cloud-precipitation in C1 can develop to the strongest with widest raindrop spectrum and largest vertical scales. In the vertical direction, radar echo intensity, raindrop spectra and rain rate all increase with decreasing height. Above the 0℃ layer, the echo intensity increases most rapidly in C3; below the 0℃ layer, the echo intensity is the strongest and the rain rate is the fastest in C1. (4) For convective precipitation, weak convective precipitation has relatively strong echo intensity, large vertical scale, small raindrop diameters and high concentration in C2 and C3. On the contrary, deep convective precipitation has relatively strong echo intensity, large vertical scale and high concentration of large particles in C1. In the vertical direction, profiles of echo intensity and rain rate of the cloud-precipitation in the three sub-regions both increase with decreasing height, and the large slope of the rain rate profile is changed from C2 to C1. When closing to the surface, the slope of the rain rate profile is 0 in all the three subregions of C1, C2 and C3. However, the profiles of the raindrop diameter and concentration are more complicated. They are dominated by coagulation and collision-coalescence in C1, while coagulation and collision-coalescence as well as evaporation and shattering can be more critical in C2 and C3. (5) For small surface rain rate, the growth process of the particles more likely appears at 0.5–2 km, and evaporation and shattering can then become more important, especially in C1. When surface rain rate is increasing, collision-coalescence is dominant in all the three sub-regions.
-
图 5 三个子地区层性降水Ze的NCFAD (a1—c1. 按T0对齐后的观测结果,a2—c2. 按海拔高度的观测结果,a、b、c分别对应C1、C2、C3;d1—d2. 中位数廓线和T0的对比结果;Distance代表与T0的距离,ASL代表海拔高度;色阶:不同高度、不同参量区间的频数与所有区间最大频数的比值;带标号的曲线为中位数廓线,水平黑色实线为T0,水平黑色虚线为T0加/减一倍标准差的高度)
Figure 5. NCFADs of Ze for stratiform precipitation observed over three sub-regions (a1—c1. results according to T0,a2—c2. results by altitude,the C1,C2,and C3 are presented a,b and c;d1—d2. results of median profiles and T0;Distance stands for distance from T0,ASL stands for altitude;shaded,ratio of frequencies of different heights and different parameter intervals to maximum frequencies of all intervals;marked profiles are medians,horizontal solid black lines represent T0,and horizontal dashed black lines denote T0 plus or minus their standard deviations)
图 6 三个子区对流降水Ze的NCFAD (a—c. C1、C2、C3观测,d. 中位数廓线和T0对比;ASL为海拔高度;色阶:不同高度、不同参量区间的频数与所有区间最大频数的比值;带标号的曲线为中位数廓线,水平黑色实线为T0,水平黑色虚线为T0加/减一倍标准差的高度)
Figure 6. NCFADs of Ze for convective precipitation observed over three sub-regions (a—c. results for C1,C2,and C3,d. results of median profiles and T0;ASL stands for altitude;shaded,ratio of frequencies of different heights and different parameter intervals to maximum frequencies of all intervals;marked profiles are medians,horizontal solid black lines represent T0,and horizontal dashed black lines denote T0 plus or minus their standard deviations)
图 7 三个子地区层性降水Dm (a1—d1、a2—d2) 和dBNw (a3—d3、a4—d4) 的NCFAD (a1—c1、a3—c3. 按T0对齐后的观测, a2—c2、a4—c4. 按海拔高度的观测,a、b和c分别对应C1、C2、C3;d. 中位数廓线和T0的对比;Distance代表与T0的距离,ASL代表海拔高度;色阶:不同高度、不同参量区间的频数与所有区间最大频数的比值;带标号的曲线为中位数,水平黑色实线为T0,水平黑色虚线为T0加/减一倍标准差的高度)
Figure 7. NCFADs of Dm and dBNw for stratiform precipitation observed over three sub-regions (a1—c1,a3—c3. results by altitude,a2—c2,a4—c4. results according to T0,the C1,C2,and C3 are presented a,b and c;d1—d2,d3—d4. results of median profiles and T0;Distance stands for distance from T0,ASL stands for altitude;shaded,ratio of frequencies of different heights and different parameter intervals to maximum frequencies of all intervals;marked profiles are medians,horizontal solid black lines represent T0,and horizontal dashed black lines denote T0 plus or minus their standard deviations)
图 8 三个子地区对流降水Dm (a1—d1) 和dBNw (a2—d2) 的NCFAD (a—c. C1、C2和C3的观测,d. 中位数和T0的对比;ASL代表海拔高度;色阶:不同高度、不同参量区间的频数与所有区间最大频数的比值;带标号的曲线为中位数,水平黑色实线为T0,水平黑色虚线为T0加/减一倍标准差的高度)
Figure 8. NCFADs of Dm and dBNw for convective precipitation observed over three sub-regions (a1—c1,a2—c2. results for C1,C2,and C3;d1,d2. results of median profiles and T0;ASL stands for altitude;shaded,ratio of frequencies of different heights and different parameter intervals to maximum frequencies of all intervals;marked profiles are medians,horizontal solid black lines represent T0,and horizontal dashed black lines denote T0 plus or minus their standard deviations)
图 9 三个子区层性降水在Rs1≤0.4 mm/h (a1—a3)、0.4<Rs2≤0.7 mm/h (b1—b3)、0.7<Rs3≤1.2 mm/h (c1—c3)和Rs4>1.2 mm/h (d1—d3)的Ze(a1—d1)、Dm(a2—d2)和dBNw(a3—d3)的平均廓线
Figure 9. Average profiles of Ze (a1—d1),Dm (a2—d2),and dBNw (a3—d3) for stratiform precipitation calculated by Rs1≤0.4 mm/h (a1—a3),0.4<Rs2≤0.7 mm/h (b1—b3),0.7<Rs3≤1.2 mm/h (c1—c3) and Rs4>1.2 mm/h (d1—d3)
图 10 三个子区对流降水在Rs1≤0.7 mm/h (a1—a3)、0.7<Rs2≤1.7 mm/h (b1—b3)、1.7<Rs3≤4.2 mm/h (c1—c3)和Rs4>4.2 mm/h (d1—d3)的Ze(a1—d1)、Dm(a2—d2)和dBNw(a3—d3)的平均廓线
Figure 10. Average profiles of Ze (a1—d1),Dm (a2—d2),and dBNw (a3—d3) for convective precipitation calculated by Rs1≤0.7 mm/h (a1—a3),0.7<Rs2≤1.7 mm/h (b1—b3),1.7<Rs3≤4.2 mm/h (c1—c3) and Rs4>4.2 mm/h (d1—d3)
图 11 三个子地区层性降水 (a1—c1) 和对流降水 (a2—c2) R的平均廓线 (a、b和c分别对应C1、C2和C3,黑色圆、三角、正方形分别为降水顶向下到第1、第2、第3个廓线斜率变化的高度)
Figure 11. Average profiles of R for the stratiform precipitation (a1—c1) and convective precipitation (a2—c2) (C1,C2,and C3 are presented a,b,and c;black circle represents height of slope change from the precipitation top down to the first profile, black triangle represents height of slope change further down to the second profile, and black square represents height of slope change further down to the third profile)
表 1 观测期间GPM/DPR在3个子地区探测的层性和对流降水样本数及百分比
Table 1. Total sample numbers and percentages of stratiform and convective precipitation detected by GPM/DPR in the three sub-regions during the observation period
降水类型 不同子地区廓线数(占比) C1 C2 C3 总数 层性降水 总面积 143003(91.3%) 103314(91.0%) 130071(90.1%) 376388 单位面积 0.61 0.51 0.55 0.56 对流降水 总面积 13548(8.7%) 10277(9.0%) 14231(9.9%) 38056 单位面积 0.058 0.051 0.061 0.057 总数 总面积 156551 113591 144302 414444 单位面积 0.67 0.56 0.61 0.62 表 2 三个子地区两类降水的HET分位数和平均值
Table 2. HET statistical quantiles and averages of two precipitation types in the three sub-regions
降水类型 子区 分位数(km) 平均值(km) 5% 25% 50% 75% 95% 层性降水 C1 3.0 4.7 5.7 7.0 9.3 5.9 C2 4.3 5.3 6.3 7.7 9.7 6.5 C3 5.7 6.7 7.3 8.3 10.0 7.6 对流降水 C1 3.0 5.3 6.7 9.3 13.3 7.4 C2 4.3 5.7 7.0 9.0 12.3 7.5 C3 5.7 6.7 8.0 9.7 13.0 8.5 表 3 三个子地区两类降水强度的斜率
Table 3. Slopes of R for stratiform and convective precipitation in the three sub-regions
C1 C2 C3 层性降水 第1层 −0.30 −0.31 −0.25 第2层 −0.40 −0.39 −0.29 第3层 −0.06 −0.04 −0.01 对流降水 第1层 −0.16 −0.20 −0.14 第2层 −0.28 −0.28 −0.17 第3层 −0.07 −0.06 −0.03 第4层 0 0 0 -
[1] 杜爽,王东海,李国平等. 2020. 基于双频星载降水雷达GPM数据的华南地区降水垂直结构特征分析. 热带气象学报,36(1):115-130Du S,Wang D H,Li G P,et al. 2020. Analysis of the vertical structure of precipitation in south China based on dual-frequency spaceborne precipitation radar GPM product. J Trop Meteor,36(1):115-130 (in Chinese) [2] 傅云飞,曹爱琴,李天奕等. 2012. 星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征. 气象学报,70(3):436-451 doi: 10.11676/qxxb2012.037Fu Y F,Cao A Q,Li T Y,et al. 2012. Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM precipitation radar. Acta Meteor Sinica,70(3):436-451 (in Chinese) doi: 10.11676/qxxb2012.037 [3] 傅云飞,潘晓,刘国胜等. 2016. 基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究. 大气科学,40(1):102-120Fu Y F,Pan X,Liu G S,et al. 2016. Characteristics of precipitation based on cloud brightness temperatures and storm tops in summer Tibetan Plateau. Chinese J Atmos Sci,40(1):102-120 (in Chinese) [4] 李函璐. 2021. 基于TRMM PR探测的青藏高原东坡降水结构特征分析[D]. 合肥: 中国科学技术大学. Li H L. 2021. Analysis of precipitation structure in summer on the eastern slope of Tibetan Plateau based on TRMM PR[D]. Hefei: University of Science and Technology of China (in Chinese) [5] 潘晓. 2016. 星载测雨雷达和测云雷达探测的夏季高原云和降水特征研究[D]. 合肥: 中国科学技术大学. Pan X. 2016. Characteristics of precipitation and clouds over the Tibetan Plateau in summer based on TRMM and CloudSat[D]. Hefei: University of Science and Technology of China (in Chinese) [6] 杨忠林,赵坤,徐坤等. 2019. 江淮梅雨期极端对流微物理特征的双偏振雷达观测研究. 气象学报,77(1):58-72 doi: 10.11676/qxxb2018.040Yang Z L,Zhao K,Xu K,et al. 2019. Microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe river basin during the Meiyu season based on polarimetric radar data. Acta Meteor Sinica,77(1):58-72 (in Chinese) doi: 10.11676/qxxb2018.040 [7] 尹金方,王东海,翟国庆等. 2013. 基于星载云雷达资料的东亚大陆云垂直结构特征分析. 气象学报,71(1):121-133 doi: 10.11676/qxxb2013.010Yin J F,Wang D H,Zhai G Q,et al. 2013. A study of cloud vertical profiles from the Cloudsat data over the East Asian Continent. Acta Meteor Sinica,71(1):121-133 (in Chinese) doi: 10.11676/qxxb2013.010 [8] 张奡祺,傅云飞. 2018. GPM卫星双频测雨雷达探测降水结构的个例特征分析. 大气科学,42(1):33-51Zhang A Q,Fu Y F. 2018. The structural characteristics of precipitation cases detected by dual-frequency radar of GPM satellite. Chinese J Atmos Sci,42(1):33-51 (in Chinese) [9] 赵艳风,王东海,尹金方. 2014. 基于CloudSat资料的青藏高原地区云微物理特征分析. 热带气象学报,30(2):239-248 doi: 10.3969/j.issn.1004-4965.2014.02.005Zhao Y F,Wang D H,Yin J F. 2014. A study on cloud microphysical characteristics over the Tibetan Plateau using CloudSat data. J Trop Meteor,30(2):239-248 (in Chinese) doi: 10.3969/j.issn.1004-4965.2014.02.005 [10] 仲凌志,陈林,杨蓉芳等. 2018. 基于星载测雨雷达2004—2014年观测的川渝地区降水垂直结构的气候特征. 气象学报,76(2):213-227 doi: 10.11676/qxxb2017.089Zhong L Z,Chen L,Yang R F,et al. 2018. Variability in the vertical structure of precipitation in Sichuan and Chongqing based on 2004-2014 space-borne observations. Acta Meteor Sinica,76(2):213-227 (in Chinese) doi: 10.11676/qxxb2017.089 [11] Awaka J,Le M D,Chandrasekar V,et al. 2016. Rain type classification algorithm module for GPM dual-frequency precipitation radar. J Atmos Ocean Technol,33(9):1887-1898 doi: 10.1175/JTECH-D-16-0016.1 [12] Chandrasekar V,Le M D. 2015. Evaluation of profile classification module of GPM-DPR algorithm after launch∥2015 IEEE International Geoscience and Remote Sensing Symposium. Milan:IEEE,5174-5177 [13] Chen B J,Hu Z Q,Liu L P,et al. 2017. Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX–Ⅲ. J Geophys Res:Atmos,122(20):11092-11106 doi: 10.1002/2017JD027233 [14] Fu Y F,Liu G S. 2007. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J Appl Meteor Climatol,46(5):667-672 doi: 10.1175/JAM2484.1 [15] Fu Y F,Pan X,Xian T,et al. 2018. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Climate Dyn,51(5-6):1971-1989 doi: 10.1007/s00382-017-3992-3 [16] Hamada A,Takayabu Y N. 2016. Improvements in detection of light precipitation with the global precipitation measurement dual-frequency precipitation radar (GPM DPR). J Atmos Ocean Technol,33(4):653-667 doi: 10.1175/JTECH-D-15-0097.1 [17] Hou A Y,Kakar R K,Neeck S,et al. 2014. The global precipitation measurement mission. Bull Amer Meteor Soc,95(5):701-722 doi: 10.1175/BAMS-D-13-00164.1 [18] Hu L,Deng D F,Gao S T,et al. 2016. The seasonal variation of Tibetan convective systems:Satellite observation. J Geophys Res:Atmos,121(10):5512-5525 doi: 10.1002/2015JD024390 [19] Huo Z Y,Ruan Z,Wei M,et al. 2019. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res,222:47-61 doi: 10.1016/j.atmosres.2019.01.022 [20] Jash D,Resmi E A,Unnikrishnan C K,et al. 2019. Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station:An inter-comparison of disdrometer and Micro Rain Radar. Atmos Res,217:24-36 doi: 10.1016/j.atmosres.2018.10.014 [21] Kumar S,Silva Y. 2019. Vertical characteristics of radar reflectivity and DSD parameters in intense convective clouds over South East South Asia during the Indian Summer monsoon:GPM observations. Int J Remote Sens,40(24):9604-9628 doi: 10.1080/01431161.2019.1633705 [22] Liu G S,Fu Y F. 2001. The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J Meteor Soc Japan,79(1):131-143 doi: 10.2151/jmsj.79.131 [23] Luo Y L,Zhang R H,Qian W M,et al. 2011. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in Boreal summer using CloudSat/CALIPSO data. J Climate,24(8):2164-2177 doi: 10.1175/2010JCLI4032.1 [24] Matsui T,Iguchi T,Li X W,et al. 2013. GPM satellite simulator over ground validation sites. Bull Amer Meteor Soc,94(11):1653-1660 doi: 10.1175/BAMS-D-12-00160.1 [25] Petracca M,D'Adderio L P,Porcù F,et al. 2018. Validation of GPM dual-frequency precipitation radar (DPR) rainfall products over Italy. J Hydrometeorol,19(5):907-925 doi: 10.1175/JHM-D-17-0144.1 [26] Seto S,Iguchi T,Oki T. 2013. The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Trans Geosci Remote Sens,51(12):5239-5251 doi: 10.1109/TGRS.2012.2231686 [27] Skofronick-Jackson G,Petersen W A,Berg W,et al. 2017. The Global Precipitation Measurement (GPM) mission for science and society. Bull Amer Meteor Soc,98(8):1679-1695 doi: 10.1175/BAMS-D-15-00306.1 [28] Sun Y T,Dong X Q,Cui W J,et al. 2020. Vertical structures of typical Meiyu precipitation events retrieved from GPM-DPR. J Geophys Res:Atmos,125(1):e2019JD031466 [29] Wang G L,Zhou R R,Zhaxi S L,et al. 2021. Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project. Atmos Res,249:105311 doi: 10.1016/j.atmosres.2020.105311 [30] Wang Y B,Xie X H,Meng S S,et al. 2020. Magnitude agreement,occurrence consistency,and elevation dependency of satellite-based precipitation products over the Tibetan Plateau. Remote Sens,12(11):1750 doi: 10.3390/rs12111750 [31] Wen L,Zhao K,Yang Z L,et al. 2020. Microphysics of stratiform and convective precipitation during Meiyu season in Eastern China. J Geophys Res:Atmos,125(24):e2020JD032677 [32] Wu Y H,Liu L P. 2017. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and Southern China. Adv Atmos Sci,34(6):727-736 doi: 10.1007/s00376-016-5235-7 [33] Xu W X. 2013. Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon Wea Rev,141(5):1577-1592 doi: 10.1175/MWR-D-12-00177.1 [34] Yan Y F,Liu Y M,Lu J H. 2016. Cloud vertical structure,precipitation,and cloud radiative effects over Tibetan Plateau and its neighboring regions. J Geophys Res:Atmos,121(10):5864-5877 doi: 10.1002/2015JD024591 [35] Yuter S E,Houze Jr R A. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ:Frequency distributions of vertical velocity,reflectivity,and differential reflectivity. Mon Wea Rev,123(7):1941-1963 doi: 10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2 [36] Zhang A Q,Fu Y F. 2018. Life cycle effects on the vertical structure of precipitation in east china measured by Himawari-8 and GPM DPR. Mon Wea Rev,146(7):2183-2199 doi: 10.1175/MWR-D-18-0085.1 [37] Zhang Y,Zhou Q,Lv S S,et al. 2019. Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing,China. Atmos Res,222:88-99 doi: 10.1016/j.atmosres.2019.02.007 -