A review of research on boundary convergence lines triggering of deep and moist convection
-
摘要: 边界层辐合线(BLCL)是指存在于边界层内的线状气流汇合带,被认为是深厚湿对流的主要触发系统,有多种类型,其触发对流作用非常复杂。文中就BLCL(不包括冷锋)触发对流事件的统计研究、其导致的局地温湿扰动对触发对流的影响、BLCL对流触发机制等方面的中外研究进行了系统回顾总结。已有研究结果表明,不同天气系统背景、不同地区BLCL的类型、表现形式不同,其触发深厚湿对流的概率、与对流风暴的位置、时间的相关也有所不同。BLCL能否触发对流还与大气环境条件、BLCL与其他动力学过程相互作用有关。在一定的对流环境条件下,局地温湿扰动不仅对BLCL的强度产生影响,而且还可以通过影响BLCL附近大气层结状态的分布影响到对流能否被触发。BLCL与环境动力和热力相互作用产生的局地变化使对流触发机制变得更加复杂。建议未来基于精细的观测资料和数值模拟试验针对不同区域、不同类型的BLCL的对流触发特征和机制开展系统研究。Abstract: Boundary layer convergence lines (BLCLs), an important type of weather system that can trigger deep moist convection, correspond to quasi-linearly extending airflow confluence zones in the boundary layer. Multiple types of BLCLs exist, and mechanisms for their triggering of convection are complicated. This paper summarizes the existing studies on the climatological statistics of BLCLs (excluding cold fronts) and mechanisms for their triggering of convection, and the effects of local temperature and moisture disturbances on the convection triggering. These studies have presented that the triggering probability, the storm location and time correlation are all affected by different synoptic systems and BLCL types in different regions. Under certain favorable conditions, local temperature and moisture can not only affect BLCL intensity, but also affect the distribution of atmospheric stratification near BLCLs, and thus convection initiation can occur. Moreover, the dynamical and thermal interactions between local temperature and moisture disturbances and the environment make the convection triggering mechanisms more complicated. The paper also discusses some convection triggering issues that need to be further studied. Based on fine observations and numerical simulation, it is also suggested to carry out more systematic studies on the characteristics and mechanisms of convection triggering for different regions and different types of BLCLs in the future.
-
图 2 (a) 2000—2005年6月平均(06时,世界时) 975 hPa相对湿度分布 (郑永光等,2007),(b)2003—2017年暖季 (5—8月) 中国东北区域干线出现频次网格分布 (等经纬度网格颜色越深表示该区域内干线出现频次越高,网格上的数字表示该网格区域内干线发生频次,发生频次为0 的网格则默认不标记数字;红色和蓝色实线分别为1000 和800 m 等高线)(方祖亮等,2020)
Figure 2. (a) Monthly mean relative humidity in 975 hPa at 06:00 UTC of June from 2000 to 2005 (Zheng,et al,2007), (b) Gridded frequency distribution of drylines in Northeast China during the warm season (May—August) from 2003 to 2017 (the deeper the color of the longitude and latitude grid,the higher the occurrence frequency of drylines in the region. The number on the grid indicates the frequency of drylines in the region. If the occurrence frequency is 0 within a grid,the number is not marked by default. The red and blue solid lines in the figure represent 1000 and 800 m isohypse lines,respectively)(Fang,et al,2020)
图 3 2016年6月30日09(a)、10(b)时(北京时)沧州雷达0.5°仰角径向速度场、自动气象站风场、散度和气温 (黑色圆点分别表示沧州雷达站和石家庄市位置;色阶为径向速度场,单位:m/s;蓝色风羽表示偏北风,黑色风羽表示偏南风;L代表冷区,N代表暖区)(公衍铎等,2019)
Figure 3. Radial velocity of radar at 0.5° elevation in Cangzhou,and wind,divergence and temperature of automatic weather stations at 09:00 (a) and 10:00 BT (b) 30 June 2016 (black dots indicate the location of radar station in Cangzhou and the location of Shijiazhuang city;shaded:radial velocity;blue barbs:northerly;black barbs:southerly,unit:m/s)(Gong,et al,2019)
图 4 BLCL (阵风锋) 附近对流初生示意 (a. Rotunno等(1988)提出的模型,b. Wakimoto等(2010)总结的模型;“+”表示正水平涡度,“−”表示负水平涡度,单矢线表示环流,双矢线表示上升运动,锯齿线表示边界)
Figure 4. Schematic model illustration of days when thunderstorm initiated along boundaries (a. model proposed by Rotunno,et al (1988), b. model summarized by Wakimoto,et al (2010); "+" represents positive horizontal vorticity,"−" represents negative horizontal vorticity,single-arrow line represents circulation,double-vector line represents upward movement and saw-tooth line represents boundary)
-
[1] 陈明轩,肖现,高峰. 2017. 出流边界对京津冀地区强对流局地新生及快速增强的动力效应. 大气科学,41(5):897-917Chen M X,Xiao X,Gao F. 2017. Dynamical effect of outflow boundary on localized initiation and rapid enhancement of severe convection over Beijing-Tianjin-Hebei region. Chinese J Atmos Sci,41(5):897-917 (in Chinese) [2] 陈渭民,何永健,邱新法等. 2015. 卫星云图观测原理和分析预报. 北京:气象出版社,146-161Chen W M,He Y J,Qiu X F,et al. 2015. Observation Principle,Analysis and Forecasting of Satellite Image. Beijing:China Meteorological Press,146-161 (in Chinese) [3] 谌芸,陈涛,汪玲瑶等. 2019. 中国暖区暴雨的研究进展. 暴雨灾害,38(5):483-493Chen Y,Chen T,Wang L Y,et al. 2019. A review of the warm-sector rainstorms in China. Torrential Rain Disaster,38(5):483-493 (in Chinese) [4] 刁秀广,车军辉,李静等. 2009. 边界层辐合线在局地强风暴临近预警中的应用. 气象,35(2):29-33 doi: 10.7519/j.issn.1000-0526.2009.02.005Diao X G,Che J H,Li J,et al. 2009. Application of boundary convergence line in nowcasting warning of severe convective storm. Meteor Mon,35(2):29-33 (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.02.005 [5] 丁一汇. 1978. 强对流天气的分析和预报. 气象,4(5):15-17 doi: 10.7519/j.issn.1000-0526.1978.05.007Ding Y H. 1978. Analysis and forecast of severe convective weather. Meteor Mon,4(5):15-17 (in Chinese) doi: 10.7519/j.issn.1000-0526.1978.05.007 [6] 方祖亮,俞小鼎,王秀明. 2020. 东北暖季干线统计分析. 气象学报,78(2):260-276Fang Z L,Yu X D,Wang X M. 2020. Statistical analysis of drylines in northeast China. Acta Meteor Sinica,78(2):260-276 (in Chinese) [7] 公衍铎,郑永光,罗琪. 2019. 冷涡底部一次弓状强飑线的演变和机理. 气象,45(4):483-495 doi: 10.7519/j.issn.1000-0526.2019.04.004Gong Y D,Zheng Y G,Luo Q. 2019. Evolution and development mechanisms of an arc-shaped strong squall line occurring along the south side of a cold vortex. Meteor Mon,45(4):483-495 (in Chinese) doi: 10.7519/j.issn.1000-0526.2019.04.004 [8] 何立富,陈涛,孔期. 2016. 华南暖区暴雨研究进展. 应用气象学报,27(5):559-569 doi: 10.11898/1001-7313.20160505He L F,Chen T,Kong Q. 2016. A review of studies on prefrontal torrential rain in south China. J Appl Meteor Sci,27(5):559-569 (in Chinese) doi: 10.11898/1001-7313.20160505 [9] 刘彬贤,王彦,刘一玮. 2015. 渤海湾海风锋与阵风锋碰撞形成雷暴天气的诊断特征. 大气科学学报,38(1):132-136Liu B X,Wang Y,Liu Y W. 2015. Diagnostic features of thunderstorm events triggered by collision between sea breeze front and gust front over Bohai Bay. Trans Atmos Sci,38(1):132-136 (in Chinese) [10] 卢焕珍,赵玉洁,俞小鼎等. 2008. 雷达观测的渤海湾海陆风辐合线与自动站资料的对比分析. 气象,34(9):57-64Lu H Z,Zhao Y J,Yu X D,et al. 2008. Comparative analysis of sea-land breeze convergence line along Bohai gulf with radar CINRAD-SA and automatic meteorological station data. Meteor Mon,34(9):57-64 (in Chinese) [11] 漆梁波,陈春红,刘强军. 2006. 弱窄带回波在分析和预报强对流天气中的应用. 气象学报,64(1):112-120 doi: 10.3321/j.issn:0577-6619.2006.01.011Qi L B,Chen C H,Liu Q J. 2006. Application of narrow-band echo in severe weather prediction and analysis. Acta Meteor Sinica,64(1):112-120 (in Chinese) doi: 10.3321/j.issn:0577-6619.2006.01.011 [12] 沈杭锋,翟国庆,朱补全等. 2010. 浙江沿海中尺度辐合线对飑线发展影响的数值试验. 大气科学,34(6):1127-1140 doi: 10.3878/j.issn.1006-9895.2010.06.08Shen H F,Zhai G Q,Zhu B Q,et al. 2010. A model study of impact of coastal mesoscale convergence line on development of squall line over Zhejiang province. Chinese J Atmos Sci,34(6):1127-1140 (in Chinese) doi: 10.3878/j.issn.1006-9895.2010.06.08 [13] 宋锦乾. 1981. 山东半岛辐合线与天气. 气象, 7(3): 36-37Song J Q. 1981. Convergence lines and the weather of Shandong Peninsula. Meteor Mon, 7(3): 36-37 (in Chinese) [14] 苏爱芳,孙景兰,谷秀杰等. 2013. 河南省对流性暴雨云系特征与概念模型. 应用气象学报,24(2):219-229 doi: 10.3969/j.issn.1001-7313.2013.02.010Su A F,Sun J L,Gu X J,et al. 2013. Characteristics and conceptual models of convective rainstorm clouds in Henan province. J Appl Meteor Sci,24(2):219-229 (in Chinese) doi: 10.3969/j.issn.1001-7313.2013.02.010 [15] 苏爱芳,施东雷,葛旭阳. 2019. 下垫面对郑州城市强降水的影响:城市化及地形影响的数值模拟研究. 大气科学学报,42(3):434-446Su A F,Shi D L,Ge X Y. 2019. Numerical simulation of the influence from urbanization and orography on a severe rainfall event in Zhengzhou. Trans Atmos Sci,42(3):434-446 (in Chinese) [16] 孙继松,戴建华,何立富等. 2014. 强对流天气预报的基本原理与技术方法:中国强对流天气预报手册. 北京:气象出版社,22-161Sun J S,Dai J H,He L F,et al. 2014. Basic Principles and Techniques of Severe Convective Weather Forecasting:Handbook of Severe Convective Weather Forecasting in China. Beijing:China Meteorological Press,22-161 (in Chinese) [17] 陶岚,戴建华,李佰平等. 2016. 上海地区移动型雷暴阵风锋特征统计分析. 气象,42(10):1197-1212 doi: 10.7519/j.issn.1000-0526.2016.10.004Tao L,Dai J H,Li B P,et al. 2016. Characteristics' statistical analysis of gust front generated by moving thunderstorms in Shanghai. Meteor Mon,42(10):1197-1212 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.10.004 [18] 陶诗言,丁一汇,周晓平. 1979. 暴雨和强对流天气的研究. 大气科学,3(3):227-238 doi: 10.3878/j.issn.1006-9895.1979.03.05Tao S Y,Ding Y H,Zhou X P. 1979. The research on rainstorm and severe convective weather in China. Sci Atmos Sinica,3(3):227-238 (in Chinese) doi: 10.3878/j.issn.1006-9895.1979.03.05 [19] 席宝珠,俞小鼎,孙力等. 2015. 我国阵风锋类型与产生机制分析及其主观识别方法. 气象,41(2):133-142 doi: 10.7519/j.issn.1000-0526.2015.02.001Xi B Z,Yu X D,Sun L,et al. 2015. Generating mechanism and type of gust front and its subjective identification methods. Meteor Mon,41(2):133-142 (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.02.001 [20] 王秀明,俞小鼎,周小刚. 2015. 中国东北龙卷研究:环境特征分析. 气象学报,73(3):425-441 doi: 10.11676/qxxb2015.031Wang X M,Yu X D,Zhou X G. 2015. Study of Northeast China tornadoes:The environmental characteristics. Acta Meteor Sinica,73(3):425-441 (in Chinese) doi: 10.11676/qxxb2015.031 [21] 王彦,于莉莉,李艳伟等. 2011. 边界层辐合线对强对流系统形成和发展的作用. 应用气象学报,22(6):724-731 doi: 10.3969/j.issn.1001-7313.2011.06.010Wang Yan,Yu Lili,Li Yanwei,et al. 2011. The role of boundary layer convergence line in initiation of severe weather events. J Appl Meteor Sci,22(6):724-731 (in Chinese) doi: 10.3969/j.issn.1001-7313.2011.06.010 [22] 许爱华,孙继松,许东蓓等. 2014. 中国中东部强对流天气的天气形势分类和基本要素配置特征. 气象,40(4):400-411 doi: 10.7519/j.issn.1000-0526.2014.04.002Xu A H,Sun J S,Xu D B,et al. 2014. Basic synoptic situation classification and element character of severe convection in China. Meteor Mon,40(4):400-411 (in Chinese) doi: 10.7519/j.issn.1000-0526.2014.04.002 [23] 徐亚钦. 2010. 中尺度辐合线对强天气影响分析与模拟试验[D]. 杭州: 浙江大学. Xu Y Q. 2011. Analysis and simulation of the influence of mesoscale convergence line to strong weather[D]. Hangzhou: Zhejiang University (in Chinese) [24] 俞小鼎,周小刚,王秀明. 2012. 雷暴与强对流临近天气预报技术进展. 气象学报,70(3):311-337 doi: 10.11676/qxxb2012.030Yu X D,Zhou X G,Wang X M. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica,70(3):311-337 (in Chinese) doi: 10.11676/qxxb2012.030 [25] 俞小鼎, 王秀明, 李万莉等. 2020a. 雷暴与强对流临近预报. 北京: 气象出版社. Yu X D, Wang X M, Li W L, et al. 2020a. Nowcasting of Thunderstorms and Severe Convection. Beijing: China Meteorological Press (in Chinese) [26] 俞小鼎,郑永光. 2020b. 中国当代强对流天气研究与业务进展. 气象学报,78(3):391-418Yu X D,Zheng Y G. 2020b. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica,78(3):391-418 (in Chinese) [27] 俞樟孝,吴仁广,翟国庆等. 1985. 浙江冰雹天气与边界层辐合的关系. 大气科学,9(3):268-275 doi: 10.3878/j.issn.1006-9895.1985.03.07Yu Zhangxiao,Wu Renguang,Zhai Guoqing,et al. 1985. The relationship between the boundary layer convergence and occurrence of hail weather in Zhejiang. Sci Atmos Sinica,9(3):268-275 (in Chinese) doi: 10.3878/j.issn.1006-9895.1985.03.07 [28] 翟国庆,俞樟孝. 1992. 强对流天气发生前期地面风场特征. 大气科学,16(5):522-529 doi: 10.3878/j.issn.1006-9895.1992.05.02Zhai G Q,Yu Z X. 1992. The surface characteristics of wind field prior to the occurrence of severe convection weather. Sci Atmos Sinica,16(5):522-529 (in Chinese) doi: 10.3878/j.issn.1006-9895.1992.05.02 [29] 张宁,苏爱芳,史一丛. 2017. 2014年一次飑线的发展维持原因分析. 气象,43(11):1383-1392Zhang N,Su A F,Shi Y C. 2017. Causation analysis of evolution of a squall line in 2014. Meteor Mon,43(11):1383-1392 (in Chinese) [30] 张强,胡隐樵. 2001. 大气边界层物理学的研究进展和面临的科学问题. 地球科学进展,16(4):526-532 doi: 10.3321/j.issn:1001-8166.2001.04.013Zhang Q,Hu Y Q. 2001. Scientific problems and advance of atmospheric boundary layer physics. Adv Earth Sci,16(4):526-532 (in Chinese) doi: 10.3321/j.issn:1001-8166.2001.04.013 [31] 张文龙,崔晓鹏,黄荣. 2014. 复杂地形下北京雷暴新生地点变化的加密观测研究. 大气科学,38(5):825-837Zhang W L,Cui X P,Huang R. 2014. Intensive observational study on evolution of formation location of thunderstorms in Beijing under complex topographical conditions. Chinese J Atmos Sci,38(5):825-837 (in Chinese) [32] 郑永光,张春喜,陈炯等. 2007. 用NCEP资料分析华北暖季对流性天气的气候背景. 北京大学学报(自然科学版),43(5):600-608 doi: 10.3321/j.issn:0479-8023.2007.05.003Zheng Y G,Zhang C X,Chen J,et al. 2007. Climatic background of warm-season convective weather in North China based on the NCEP analysis. Acta Sci Nat Univ Pekinensis,43(5):600-608 (in Chinese) doi: 10.3321/j.issn:0479-8023.2007.05.003 [33] 郑永光,周康辉,盛杰等. 2015. 强对流天气监测预报预警技术进展. 应用气象学报,26(6):641-657 doi: 10.11898/1001-7313.20150601Zheng Y G,Zhou K H,Sheng J,et al. 2015. Advances in techniques of monitoring,forecasting and warning of severe convective weather. J Appl Meteor Sci,26(6):641-657 (in Chinese) doi: 10.11898/1001-7313.20150601 [34] 郑永光,陶祖钰,俞小鼎. 2017. 强对流天气预报的一些基本问题. 气象,43(6):641-652Zheng Y G,Tao Z Y,Yu X D. 2017. Some essential issues of severe convective weather forecasting. Meteor Mon,43(6):641-652 (in Chinese) [35] 郑永光,蓝渝,曹艳察等. 2020. 2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理. 气象,46(5):589-602 doi: 10.7519/j.issn.1000-0526.2020.05.001Zheng Y G,Lan Y,Cao Y C,et al. 2020. Environmental conditions,evolution and mechanisms of the EF4 tornado in Kaiyuan of Liaoning Province on 3 July 2019. Meteor Mon,46(5):589-602 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.05.001 [36] Alexander L S. 2012. Mesoscale Boundaries and Storm Development in Southwestern Ontario during ELBOW 2001. Toronto:York University,303pp [37] Alexander L S,Sills D M L,Taylor P A. 2018. Initiation of convective storms at low-level mesoscale boundaries in southwestern Ontario. Wea Forecasting,33(2):583-598 doi: 10.1175/WAF-D-17-0086.1 [38] Atkins N T,Wakimoto R M,Ziegler C L. 1998. Observations of the finescale structure of a dryline during VORTEX 95. Mon Wea Rev,126(3):525-550 doi: 10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2 [39] Bai L Q,Meng Z Y,Huang Y P,et al. 2019. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts:A case study. J Geophy Res:Atmos,124(5):2379-2396 doi: 10.1029/2018JD029832 [40] Banghoff J R,Sorber J D,Stensrud D J,et al. 2020. A 10-year warm-season climatology of horizontal convective rolls and cellular convection in central Oklahoma. Mon Wea Rev,148(1):21-42 doi: 10.1175/MWR-D-19-0136.1 [41] Behrendt A,Pal S,Aoshima F,et al. 2011. Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Quart J Roy Meteor Soc,137(S1):81-100 doi: 10.1002/qj.758 [42] Bodine D,Heinselman P L,Cheong B L,et al. 2010. A case study on the impact of moisture variability on convection initiation using radar refractivity retrievals. J Appl Meteor Climatol,49(8):1766-1778 doi: 10.1175/2010JAMC2360.1 [43] Byers H R,Rodebush H R. 1948. Causes of thunderstorms of the Florida peninsula. J Meteor,5(6):275-280 doi: 10.1175/1520-0469(1948)005<0275:COTOTF>2.0.CO;2 [44] Byers H R,Braham R R. 1949. The Thunderstorm. Washington:U. S. Government Printing Office,187pp [45] Cai H Q,Lee W C,Weckwerth T M,et al. 2006. Observations of the 11 June dryline during IHOP_2002:A null case for convection initiation. Mon Wea Rev,134(1):336-354 doi: 10.1175/MWR2998.1 [46] Carbone R E,Wilson J W,Keenan T D,et al. 2000. Tropical island convection in the absence of significant topography. Part Ⅰ:Life cycle of diurnally forced convection. Mon Wea Rev,128(10):3459-3480 doi: 10.1175/1520-0493(2000)128<3459:TICITA>2.0.CO;2 [47] Couvreux F,Rio C,Guichard F,et al. 2012. Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations. Quart J Roy Meteor Soc,138(662):56-71 doi: 10.1002/qj.903 [48] Crook N A. 1996. Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon Wea Rev,124(8):1767-1785 [49] Doswell Ⅲ C A. 1987. The distinction between large-scale and mesoscale contribution to severe convection:A case study example. Wea Forecasting,2(1):3-16 doi: 10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2 [50] Doswell Ⅲ C A. 2001. Severe Convective Storms. Boston:Springer,1-26 [51] Droegemeier K K,Wilhelmson R B. 1985. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part Ⅰ:Control simulation and low-level moisture variations. J Atmos Sci,42(22):2381-2403 doi: 10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2 [52] Etling D,Brown R A. 1993. Roll vortices in the planetary boundary layer:A review. Bound Layer Meteor,65(3):215-248 doi: 10.1007/BF00705527 [53] Fujita H,Kishimoto A. 1958. Diffusion-controlled stress relaxation in polymers. Ⅱ: Stress relaxation in swollen polymers. J Polym Sci,28(118):547-567 doi: 10.1002/pol.1958.1202811806 [54] Fujita H,Kishimoto A,Matsumoto K. 1960. Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates. Trans Faraday Soc,56:424-437 doi: 10.1039/tf9605600424 [55] Gambill L D,Mecikalski J R. 2011. A satellite-based summer convective cloud frequency analysis over the southeastern United States. J Appl Meteor Climatol,50(8):1756-1769 doi: 10.1175/2010JAMC2559.1 [56] Goff R C. 1976. Vertical structure of thunderstorm outflows. Mon Wea Rev,104(11):1429-1440 doi: 10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2 [57] Gurka J J. 1976. Satellite and surface observations of strong wind zones accompanying thunderstorms. Mon Wea Rev,104(12):1484-1493 doi: 10.1175/1520-0493(1976)104<1484:SASOOS>2.0.CO;2 [58] Harrison S J,Mecikalski J R,Knupp K R. 2009. Analysis of outflow boundary collisions in north-central Alabama. Wea Forecasting,24(6):1680-1690 doi: 10.1175/2009WAF2222268.1 [59] Houston A L,Niyogi D. 2007. The sensitivity of convective initiation to the lapse rate of the active cloud-bearing layer. Mon Wea Rev,135(9):3013-3032 doi: 10.1175/MWR3449.1 [60] Huang Y P,Meng Z Y,Li W B,et al. 2019. General features of radar-observed boundary layer convergence lines and their associated convection over a sharp vegetation-contrast area. Geophys Res Lett,46(5):2865-2873 doi: 10.1029/2018GL081714 [61] Hughes C P,Veron D E. 2018. A characterization of the Delaware sea breeze using observations and modeling. J Appl Meteor Climatol,57(7):1405-1421 doi: 10.1175/JAMC-D-17-0186.1 [62] Intrieri J M,Bedard A J Jr,Hardesty R M. 1990. Details of colliding thunderstorm outflows as observed by Doppler lidar. J Atmos Sci,47(9):1081-1099 [63] Johnson Z F,Hitchens N M. 2018. Effects of soil moisture on the longitudinal dryline position in the southern Great Plains. J Hydrometeor,19(2):273-287 doi: 10.1175/JHM-D-17-0091.1 [64] Koch S E,Ray C A. 1997. Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea Forecasting,12(1):56-77 doi: 10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2 [65] Lemone M A. 1973. The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J Atmos Sci,30(6):1077-1091 doi: 10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2 [66] Luo Y L,Wang H,Zhang R H,et al. 2013. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai river basin. J Climate,26(1):110-132 doi: 10.1175/JCLI-D-12-00100.1 [67] Luo Y L,Gong Y,Zhang D L. 2014. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-yu front in east China. Mon Wea Rev,142(1):203-221 doi: 10.1175/MWR-D-13-00111.1 [68] Maddox R A. 1980. Mesoscale convective complexes. Bull Amer Meteor Soc,61:1374-1387 doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2 [69] Markowski P,Hannon C,Rasmussen E. 2006. Observations of convection initiation "failure" from the 12 June 2002 IHOP deployment. Mon Wea Rev,134(1):375-405 doi: 10.1175/MWR3059.1 [70] Markowski P M,Richardson Y. 2010. Mesoscale Meteorology in Midlatitudes. Chichester:Wiley-Blackwell Press,407pp [71] Mueller C K,Carbone R E. 1987. Dynamics of a thunderstorm outflow. J Atmos Sci,44(15):1879-1898 doi: 10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2 [72] Mueller C K,Wilson J W,Crook N A. 1993. The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea Forecasting,8(1):132-146 doi: 10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2 [73] Murphey H V,Wakimoto R M,Flamant C,et al. 2006. Dryline on 19 June 2002 during IHOP. Part Ⅰ:Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon Wea Rev,134(1):406-430 doi: 10.1175/MWR3063.1 [74] Ogura Y,Chen Y L. 1977. A life history of an intense mesoscale convective storm in Oklahoma. J Atmos Sci,34(9):1458-1476 doi: 10.1175/1520-0469(1977)034<1458:ALHOAI>2.0.CO;2 [75] Parsons D B,Shapiro M A,Hardesty R M,et al. 1991. The finescale structure of a west Texas dryline. Mon Wea Rev,119(5):1242-1258 doi: 10.1175/1520-0493(1991)119<1242:TFSOAW>2.0.CO;2 [76] Parsons D B,Shapiro M A,Miller E. 2000. The mesoscale structure of a nocturnal dryline and of a frontal-dryline merger. Mon Wea Rev,128(11):3824-3838 doi: 10.1175/1520-0493(2001)129<3824:TMSOAN>2.0.CO;2 [77] Pielke R A Sr. 2001. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys,39(2):151-177 doi: 10.1029/1999RG000072 [78] Purdom J F W. 1973. Picture of the month:Meso-highs and satellite imagery. Mon Wea Rev,101(2):180-181 doi: 10.1175/1520-0493(1973)101<0180:POTMMA>2.3.CO;2 [79] Purdom J F W. 1976. Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon Wea Rev,104(12):1474-1483 doi: 10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2 [80] Purdom J F W. 1982. Subjective Interpretations of Geostationary Satellite Data for Nowcasting. Academic Press,149-166 [81] Qin R,Chen M X. 2017. Impact of a front-dryline merger on convection initiation near a mountain ridge in Beijing. Mon Wea Rev,145(7):2611-2633 doi: 10.1175/MWR-D-16-0369.1 [82] Richter H,Bosart L F. 2002. The suppression of deep moist convection near the southern Great Plains dryline. Mon Wea Rev,130(7):1665-1691 doi: 10.1175/1520-0493(2002)130<1665:TSODMC>2.0.CO;2 [83] Roberts R D,Rutledge S. 2003. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea Forecasting,18(4):562-584 doi: 10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2 [84] Rotunno R,Klemp J B,Weisman M L. 1988. A theory for strong,long-lived squall lines. J Atmos Sci,45(3):463-485 doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2 [85] Rousseau-Rizzi R,Kirshbaum D J,Yau M K. 2017. Initiation of deep convection over an idealized mesoscale convergence line. J Atmos Sci,74(3):835-853 doi: 10.1175/JAS-D-16-0221.1 [86] Sun W Y,Ogura Y. 1979. Boundary-layer forcing as a possible trigger to a squall-line formation. J Atmos Sci,36(2):235-254 doi: 10.1175/1520-0469(1979)036<0235:BLFAAP>2.0.CO;2 [87] Taylor C M. 2015. Detecting soil moisture impacts on convective initiation in Europe. Geophys Res Lett,42(11):4631-4638 doi: 10.1002/2015GL064030 [88] Wakimoto R M,Murphey H V. 2010. Analysis of convergence boundaries observed during IHOP_2002. Mon Wea Rev,138(7):2737-2760 doi: 10.1175/2010MWR3266.1 [89] Weaver J F. 1979. Storm motion as related to boundary-layer convergence. Mon Wea Rev,107(5):612-619 [90] Weckwerth T M,Wilson J W,Wakimoto R M,et al. 1997. Horizontal convective rolls:Determining the environmental conditions supporting their existence and characteristics. Mon Wea Rev,125(4):505-526 doi: 10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2 [91] Weckwerth T M,Horst T W,Wilson J W. 1999. An observational study of the evolution of horizontal convective rolls. Mon Wea Rev,127(9):2160-2179 doi: 10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2 [92] Weckwerth T M,Murphey H V,Flamant C,et al. 2008. An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon Wea Rev,136:2283-2304 doi: 10.1175/2007MWR2128.1 [93] Weckwerth T M,Bennett L J,Miller L J,et al. 2014. An observational and modeling study of the processes leading to deep,moist convection in complex terrain. Mon Wea Rev,142(8):2687-2708 doi: 10.1175/MWR-D-13-00216.1 [94] Williams M,Houze R A Jr. 1987. Satellite-observed characteristics of winter monsoon cloud clusters. Mon Wea Rev,115(2):505-519 doi: 10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2 [95] Wilson J W,Schreiber W E. 1986. Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon Wea Rev,114(12):2516-2536 doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2 [96] Wilson J W,Mueller C K. 1993. Nowcasts of thunderstorm initiation and evolution. Wea Forecasting,8(1):113-131 doi: 10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2 [97] Wilson J W,Weckwerth T M,Vivekanandan J,et al. 1994. Boundary layer clear-air radar echoes:Origin of echoes and accuracy of derived winds. J Atmos Ocean Technol,11(5):1184-1206 doi: 10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2 [98] Wilson J W,Megenhardt D L. 1997. Thunderstorm initiation,organization,and lifetime associated with Florida boundary layer convergence lines. Mon Wea Rev,125(7):1507-1525 doi: 10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2 [99] Wilson J W,Roberts R D. 2006. Summary of convective storm initiation and evolution during IHOP:Observational and modeling perspective. Mon Wea Rev,134(1):23-47 doi: 10.1175/MWR3069.1 [100] Wu M W,Luo Y L. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J Meteor Res,30(5):719-736 doi: 10.1007/s13351-016-6089-8 [101] Young G S,Kristovich D A R,Hjelmfelt M R,et al. 2002. Rolls,streets,waves,and more:A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull Amer Meteor Soc,83(7):997-1001 doi: 10.1175/BAMS-83-7-Young [102] Ziegler C L,Hane C E. 1993. An observational study of the dryline. Mon Wea Rev,121(4):1134-1151 doi: 10.1175/1520-0493(1993)121<1134:AOSOTD>2.0.CO;2 [103] Ziegler C L,Lee T J,Pielke Sr R A. 1997. Convective initiation at the dryline:A modeling study. Mon Wea Rev,125(6):1001-1026 doi: 10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2 [104] Ziegler C L,Rasmussen E N. 1998. The initiation of moist convection at the dryline:Forecasting issues from a case study perspective. Wea Forecasting,13(4):1106-1131 -