Impacts of environmental factors on Bowen ratio in typical farmland ecosystem in the Loess Plateau
-
摘要: 鲍恩比能够综合反映陆面气候状态的物理特性,是有效刻画生态系统水热分配的关键参数之一。本研究利用安装在定西和庆阳的涡动相关系统开展了黄土高原半干旱和半湿润农田生态系统能量分配特征观测试验,研究了生态环境因子对鲍恩比的影响机理,揭示了干、湿条件下生理生态因子对水热交换的响应规律。结果表明,处于半干旱区的定西年内感热通量是可利用能量的主要消耗项,即使在降水较为集中的季风期,其鲍恩比依旧在1附近波动。对于半湿润地区的庆阳而言,夏季潜热通量在能量分配中占主导地位(鲍恩比平均为0.71),其余三季感热在能量分配中起支配作用(鲍恩比为1.15—5.85)。从影响陆面水热交换的气象因子来看,鲍恩比随饱和水汽压差的增大而增大,随降水量和土壤湿度的增大而显著减小。干旱条件下,鲍恩比与半湿润区饱和水汽压差的相关更高(R2=0.44);湿润条件下,则与半干旱区的饱和水汽压差相关更好(R2=0.38),且生长季半干旱区的鲍恩比为半湿润区的1.5倍。半湿润区干、湿条件下降水量与鲍恩比均显著相关,干旱条件下R2达到0.79;但半干旱区仅在干旱条件下降水量与鲍恩比存在显著的相关(R2=0.40)。土壤含水量在半湿润区与鲍恩比的相关更显著,且干旱条件下鲍恩比随土壤含水量的降低而增大的幅度更大。从影响生长季鲍恩比的生态因子来看,Priestley-Taylor系数与鲍恩比满足幂函数规律,在黄土高原农田生态系统具有显著的相关,半湿润区和半干旱区R2分别为0.62和0.72。另外,黄土高原农田生态系统鲍恩比随归一化植被指数的增大而减小,半湿润区二者关系更显著(R2=0.40),但半干旱区鲍恩比对归一化植被指数变化的响应更迅速。冠层气孔导度与鲍恩比呈负指数关系,半干旱区鲍恩比随冠层气孔导度的增大而减小的趋势比半湿润区更明显。该研究对揭示黄土高原典型农田生态系统陆面特征及改进陆面过程参数化关系具有重要参考意义。Abstract: The Bowen ratio can comprehensively reflect physical characteristics of land surface climate state and is one of the key parameters that describe water and heat distribution of the ecosystem. In this paper, the eddy correlation systems installed in Dingxi and Qingyang are used to carry out the observation experiment on energy distribution characteristics in semi-arid and semi-humid farmland ecosystem over the Loess Plateau. Meanwhile, the influence mechanism of eco-environmental factors on the Bowen ratio is studied. This study also reveals the response law of physiological and ecological factors to water and heat exchanges under dry and wet conditions. The results show that sensible heat flux in Dingxi, a semi-arid region, is the main consumption item of available energy. Even in the monsoon season when precipitation is relatively concentrated, its Bowen ratio still fluctuates around 1. For the situation in Qingyang, which is located in the semi-humid area, latent heat flux in summer plays a dominant role in energy distribution, and sensible heat fluxes dominates the energy distribution in the rest of the season (the Bowen ratio is between 1.15—5.85). From the perspective of meteorological factors that affect land surface water and heat exchanges, the Bowen ratio increases with increasing VPD (vapor pressure deficit), and decreases significantly with increasing precipitation and soil moisture. Under arid condition, the Bowen ratio has a higher correlation with VPD in semi-humid areas (R2=0.44) and a higher correlation with VPD in semi-arid areas (R2=0.38) under humid conditions. In addition, the Bowen ratio in the semi-arid region is 1.5 times higher than that in the semi-humid region during the growing season. In semi-humid areas, there is a significant correlation between precipitation and the Bowen ratio under both dry and wet conditions, and the determination coefficient even reaches 0.79 under drought condition. However, in semi-arid areas, the correlation is significant (R2=0.40) only in drought condition. The correlation between soil water content (SWC) and the Bowen ratio is more significant in semi-humid areas, and the Bowen ratio increases with decreasing SWC under drought condition. From the perspective of ecological factors that affect Bowen ratio in the growing season, the relationship between the Priestley-Taylor coefficient (
$\alpha $ ) and the Bowen ratio satisfies the power function law. There is a high correlation in the farmland ecosystem over the Loess Plateau, and the determination coefficients for semi-humid and semi-arid areas are 0.62 and 0.72 respectively. The Bowen ratio decreases with increasing NDVI (Normalized Difference Vegetation Index), and this phenomenon is more obvious in the semi-humid zone (R2=0.40). However, the response of the Bowen ratio to NDVI in semi-arid area is faster than that in semi-humid area. There is a negative exponential relationship between the canopy stomatal conductance (Gs) and the Bowen ratio. The Bowen ratio has a declining trend with increasing Gs in semi-arid areas than in semi-humid areas. This study reveals the land surface characteristics in typical farmland ecosystem over the Loess Plateau and provides an important reference for improving the parameterization of land surface process.-
Key words:
- Loess Plateau /
- Farmland ecosystem /
- Physiological and ecological factors /
- Bowen ratio
-
表 1 实验仪器型号及安装高度
Table 1. Experimental instrument type and installation height
仪器 型号 安装高度 定西站 庆阳站 气体分析仪 Li-7500,Li-Cor 2.5 m 3 m 三维超声风速仪 CSAT-3,Campbell 2.5 m 3 m 温、湿度计 HMP45C-L,Vaisala 1、2、4、10、16 m 2、4、8、18 m 净辐射计 CNR4,Kipp & Zone 1.5 m 1.5 m 热流板 HFP01SC-L50,Hukseflux 2 cm 1、2.5 cm 土壤温度探头 STP01-L50,Hukseflux 0、5、10、20、30、40、50、80 cm 0、5、10、20、40、60、90 cm 水含量反射计 CS616-L,Campbell 10、20、40、50、80 cm 5、10、20、60、90 cm 表 2 本研究中使用的数据集
Table 2. Details regarding the datasets used in this study
数据类型 数据来源 观测要素 资料时段 观测地点 陆面综合观测试验资料 农业气象试验站 湍流通量,近地层温、湿、风梯度,辐射,土壤
温、湿梯度等2016年8月—2019年5月
2011年7月—2019年6月
2011年7月—2012年7月定西 2013年5月—10月
2015年12月—2016年5月
2018年5月—2019年7月庆阳 常规气象观测资料 中国气象数据网 地温、气温、气压、
降水等2011年7月—2019年6月
1980年1月—2010年12月定西、西峰 卫星遥感观测资料 NASA 归一化植被指数 2011年7月—2019年6月
(时间分辨率为16 d)中国区域内
(空间分辨率为250 m)表 3 能量通量和环境要素
Table 3. Energy fluxes and environmental factors
站点 时间 Sr*
(MJ/m2)Rn
(MJ/m2)H
(MJ/m2)LE
(MJ/m2)G
(MJ/m2)β Ta
(℃)VPD
(kPa)雨量
(mm)ET*
(mm)α NDVI 定西 全年 2016 8544.0 3415.4 1698.6 853.2 388.4 3.8 11.8 0.9 275.9 348.1 0.5 0.3 2017 8420.8 3324.0 1690.6 1020.2 461.2 3.3 11.4 0.9 405.4 416.2 0.7 0.3 2018 8590.9 3699.1 1353.8 1298.5 267.9 2.6 10.7 0.8 478.9 529.8 0.6 0.3 2019 8340.7 3547.3 1587.4 1014.8 263.4 4.1 11.0 0.8 405.4 414.0 0.5 0.3 生长季 2016 5871.3 2605.4 1176.0 724.0 350.9 2.5 18.5 1.2 262.7 295.4 0.6 0.4 2017 5782.2 2548.8 1136.7 877.0 392.6 2.3 18.0 1.2 363.8 357.8 0.7 0.4 2018 5900.5 3028.6 916.9 1165.6 281.8 1.2 18.7 1.0 421.0 475.6 0.7 0.4 2019 5684.4 2735.0 1072.2 903.9 258.1 2.2 17.8 1.0 371.0 368.8 0.6 0.4 庆阳 全年 2011 5827.2 2984.9 1044.4 1501.5 168.8 2.0 11.6 0.7 614.5 612.6 0.7 0.4 2012 5918.9 2753.0 792.5 1579.5 119.9 1.9 12.0 0.7 493.6 644.4 0.7 0.4 2013 6084.0 2972.4 1050.2 1572.2 156.1 1.9 11.9 0.7 745.8 641.5 0.7 0.5 2015 6212.7 3141.8 1111.1 1575.0 155.1 2.0 11.6 0.7 493.7 642.6 0.7 0.5 2016 6015.2 3084.7 1165.0 1554.0 166.2 1.9 11.5 0.7 507.9 634.0 0.7 0.5 2018 6238.9 2921.8 1123.0 1427.5 170.8 2.8 10.5 0.6 687.2 582.4 0.5 0.4 2019 5914.0 2915.4 997.3 1316.0 140.9 3.7 11.0 0.7 545.4 536.9 0.6 0.4 生长季 2011 4034.2 2246.9 668.7 1284.2 177.2 0.7 18.3 0.9 498.7 524.0 0.8 0.5 2012 3946.8 2092.8 485.9 1342.7 147.7 0.8 19.7 1.0 448.7 547.8 0.9 0.5 2013 4060.0 2234.4 619.2 1379.3 175.1 0.6 18.7 0.9 724.3 562.7 0.9 0.6 2015 3962.7 2250.9 631.6 1335.1 175.1 0.7 18.2 0.9 446.8 544.7 0.8 0.6 2016 3989.3 2200.7 667.9 1317.5 181.7 0.8 18.2 0.9 482.1 537.5 0.8 0.6 2018 4272.1 2377.4 690.4 1248.7 188.8 0.9 17.5 0.8 637.1 509.5 0.6 0.5 2019 4027.3 2219.4 648.5 1213.9 163.3 0.8 18.1 0.9 506.0 495.3 0.8 0.5 *:Sr为短波辐射,ET为蒸散量。 表 4 试验站地表能量平衡特征
Table 4. Characteristics of energy balance in different regions
站点 白天 夜间 全天 样本数 普通最小二乘法 能量
平衡比样本数 普通最小二乘法 能量
平衡比样本数 普通最小二乘法 能量
平衡比k R2 k R2 k R2 定西 10516 0.65 0.68 0.89 11190 0.18 0.05 0.03 40350 0.76 0.81 0.68 庆阳 5149 0.71 0.71 0.81 7773 0.11 0.05 0.49 24064 0.73 0.85 0.60 表 5 能量分量年平均日变化峰值和日均值
Table 5. Annual average daily variation peak and daily average value of energy components
站点 Rn (W/m2) LE (W/m2) H (W/m2) G (W/m2) 峰值 均值 峰值 均值 峰值 均值 峰值 均值 定西 334.10 67.29 64.14 20.95 120.29 28.98 157.88 6.08 庆阳 348.37 71.74 125.83 41.41 122.32 28.50 96.93 1.62 表 6 能量通量季节平均日峰值和日均结果
Table 6. Seasonal averages of peak and daily average values of energy fluxes
能量分量(W/m2) 春季 夏季 秋季 冬季 定西 庆阳 定西 庆阳 定西 庆阳 定西 庆阳 Rn 峰值 345.02 376.71 440.16 460.16 362.38 348.03 226.45 240.88 均值 67.73 77.14 109.87 119.84 78.76 75.02 25.34 26.20 LE 峰值 39.31 82.61 103.10 169.41 101.19 168.67 22.55 21.63 均值 11.77 25.70 36.00 74.11 32.54 58.31 5.23 6.64 H 峰值 148.75 162.54 143.10 112.81 107.21 110.68 93.27 118.66 均值 34.85 34.02 41.31 30.49 28.59 25.33 17.93 21.93 G 峰值 173.24 109.18 214.49 125.82 124.15 97.69 136.16 56.19 均值 10.34 6.68 20.07 8.67 1.24 −2.29 −3.29 −6.94 -
[1] 杜群, 刘辉志, 冯健武等. 2014. 数据填补及能量闭合对半干旱区生态系统年净碳交换的影响. 中国科学: 地球科学, 44(5): 989-1001.Du Q, Liu H Z, Feng J W, et al. 2014. Effects of different gap filling methods and land surface energy balance closure on annual net ecosystem exchange in a semiarid area of China. Sci China Earth Sci, 57(6): 1340-1351 [2] 刘树华,刘和平. 1996. 不同下垫面湍流输送计算方法的研究. 应用气象学报,7(2):229-237Liu S H,Liu H P. 1996. A study on the calculation method of turbulent transfer from different underlying surfaces. Quart J Appl Meteor,7(2):229-237 (in Chinese) [3] 刘树华,茅宇豪,胡非等. 2009. 不同下垫面湍流通量计算方法的比较研究. 地球物理学报,52(3):616-629Liu S H,Mao Y H,Hu F,et al. 2009. A comparative study of computing methods of turbulent fluxes on different underling surfaces. Chinese J Geophy,52(3):616-629 (in Chinese) [4] 王欣,文军,韦志刚等. 2009. 中国黄土高原塬区表层土壤水分盈缺状况的研究. 高原气象,28(3):530-538Wang X,Wen J,Wei Z G,et al. 2009. Study on water deficit of the topsoil over the Chinese Loess Plateau mesa region. Plateau Meteor,28(3):530-538 (in Chinese) [5] 岳平, 张强, 赵文等. 2015. 黄土高原半干旱草地生长季干湿时段环境因子对陆面水、热交换的影响. 中国科学: 地球科学, 45(8): 1229-1242.Yue P, Zhang Q, Zhao W, et al. 2015. Influence of environmental factors on land-surface water and heat exchange during dry and wet periods in the growing season of semiarid grassland on the Loess Plateau. Sci China Earth Sci, 58(11): 2002-2014 [6] 张海宏,肖宏斌,祁栋林等. 2017. 青藏高原湿地土壤冻结、融化期间的陆面过程特征. 气象学报,75(3):481-491 doi: 10.11676/qxxb2017.034Zhang H H,Xiao H B,Qi D L,et al. 2017. Features of land surface process over wetland at Tibetan Plateau during soil freezing and thawing periods. Acta Meteor Sinica,75(3):481-491 (in Chinese) doi: 10.11676/qxxb2017.034 [7] 张璐,黄倩,张宏昇等. 2021. 干湿地表的湍流特征及其对深对流影响的大涡模拟. 气象学报,79(4):659-673 doi: 10.11676/qxxb2021.037Zhang L,Huang Q,Zhang H S,et al. 2021. Large eddy simulation of turbulence effects on deep-convection triggering over dry and wet surfaces. Acta Meteor Sinica,79(4):659-673 (in Chinese) doi: 10.11676/qxxb2021.037 [8] 张强,王胜. 2008. 关于黄土高原陆面过程及其观测试验研究. 地球科学进展,23(2):167-173 doi: 10.3321/j.issn:1001-8166.2008.02.007Zhang Q,Wang S. 2008. On land surface processes and its experimental study in Chinese Loess Plateau. Adv Earth Sci,23(2):167-173 (in Chinese) doi: 10.3321/j.issn:1001-8166.2008.02.007 [9] 张强,孙昭萱,王胜. 2011. 黄土高原定西地区陆面物理量变化规律研究. 地球物理学报,54(7):1727-1737 doi: 10.3969/j.issn.0001-5733.2011.07.005Zhang Q,Sun Z X,Wang S. 2011. Analysis of variation regularity of land-surface physical quantities over Dingxi Region of the Loess Plateau. Chinese J Geophys,54(7):1727-1737 (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.07.005 [10] 张强, 李宏宇, 赵建华. 2012. 垂直平流输送和土壤热储存补偿对黄土高原地表能量平衡的修正. 中国科学: 地球科学, 42(1): 42-51.Zhang Q, Li H Y, Zhao J H. 2012. Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau. Sci China Earth Sci, 55(4): 580-589 [11] 张强, 张良, 黄菁等. 2014. 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系. 中国科学: 地球科学, 44(9): 2062-2076.Zhang Q, Zhang L, Huang J, et al. 2014. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment. Sci China Earth Sci, 57(9): 2135-2147 [12] Arain M A,Black T A,Barr A G,et al. 2003. Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrol Process,17(18):3581-3600 doi: 10.1002/hyp.1348 [13] Baldocchi D D,Hincks B B,Meyers T P. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology,69(5):1331-1340 doi: 10.2307/1941631 [14] Biudes M S,Vourlitis G L,Machado N G,et al. 2015. Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso,Brazil. Agri Forest Meteor,202:112-124 doi: 10.1016/j.agrformet.2014.12.008 [15] Blanken P D,Black T A,Yang P C,et al. 1997. Energy balance and canopy conductance of a boreal aspen forest:Partitioning overstory and understory components. J Geophys Res,102(D24):28915-28927 doi: 10.1029/97JD00193 [16] Chen S P,Chen J Q,Lin G H,et al. 2009. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agri Forest Meteor,149(11):1800-1809 doi: 10.1016/j.agrformet.2009.06.009 [17] Chen X,Yu Y,Chen J B,et al. 2016. Seasonal and interannual variation of radiation and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau,northwestern China. Atmos Res,176-177:240-253 doi: 10.1016/j.atmosres.2016.03.003 [18] Cho J,Oki T,Yeh P J F,et al. 2012. On the relationship between the Bowen ratio and the near-surface air temperature. Theor Appl Climatol,108(1-2):135-145 doi: 10.1007/s00704-011-0520-y [19] Da Rocha H R,Goulden M L,Miller S D,et al. 2004. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl,14(sp4):22-32 doi: 10.1890/02-6001 [20] Ding R S,Kang S Z,Li F S,et al. 2013. Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching. Agri Forest Meteor,168:140-148 doi: 10.1016/j.agrformet.2012.08.003 [21] Dolman A J,Gash J H C,Roberts J,et al. 1991. Stomatal and surface conductance of tropical rainforest. Agri Forest Meteor,54(2-4):303-318 doi: 10.1016/0168-1923(91)90011-E [22] Falge E,Baldocchi D,Olson R,et al. 2001. Gap filling strategies for long term energy flux data sets. Agri Forest Meteor,107(1):71-77 doi: 10.1016/S0168-1923(00)00235-5 [23] Feng Y,Gong D Z,Mei X R,et al. 2017. Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China. Agric Water Manage,191:193-206 doi: 10.1016/j.agwat.2017.06.009 [24] Foken T,Wimmer F,Mauder M,et al. 2006. Some aspects of the energy balance closure problem. Atmos Chem Phys,6(12):4395-4402 doi: 10.5194/acp-6-4395-2006 [25] Fraedrich K,Kleidon A,Lunkeit F. 1999. A green planet versus a desert world:Estimating the effect of vegetation extremes on the atmosphere. J Climate,12(10):3156-3163 doi: 10.1175/1520-0442(1999)012<3156:AGPVAD>2.0.CO;2 [26] Gao X R,Sun M,Luan Q H,et al. 2020. The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Sci Total Environ,708:135111 doi: 10.1016/j.scitotenv.2019.135111 [27] Gerken T,Bromley G T,Stoy P C. 2018. Surface moistening trends in the northern North American Great Plains increase the likelihood of convective initiation. J Hydrometeorol,19(1):227-244 doi: 10.1175/JHM-D-17-0117.1 [28] Hossen S,Mano M,Miyata A,et al. 2012. Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrol Process,26(9):1311-1320 doi: 10.1002/hyp.8232 [29] Huang J P,Yu H P,Guan X D,et al. 2016. Accelerated dryland expansion under climate change. Nat Climate Chang,6(2):166-171 doi: 10.1038/nclimate2837 [30] Kang M,Zhang Z,Noormets A,et al. 2015. Energy partitioning and surface resistance of a poplar plantation in northern China. Biogeosciences,12(14):4245-4259 doi: 10.5194/bg-12-4245-2015 [31] Kumagai T,Saitoh T M,Sato Y,et al. 2004. Transpiration,canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak,Borneo:Dry spell effects. J Hydrol,287(1-4):237-251 doi: 10.1016/j.jhydrol.2003.10.002 [32] Lei H M,Yang D W. 2010. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agri Forest Meteor,150(4):581-589 doi: 10.1016/j.agrformet.2010.01.022 [33] Li Z Q,Yu G R,Wen X F,et al. 2005. Energy balance closure at ChinaFLUX sites. Sci China Earth Sci,48(S1):51-62 [34] Lu Y Q,Kueppers L M. 2012. Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3:Community Land Model 3.5). J Geophys Res,117(D6):D06111 [35] Majozi N P,Mannaerts C M,Ramoelo A,et al. 2017. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza,Kruger National Park,South Africa. Hydrol Earth Syst Sci,21(7):3401-3415 doi: 10.5194/hess-21-3401-2017 [36] McNaughton K G,Spriggs T W. 1986. A mixed-layer model for regional evaporation. Bound-Layer Meteor,34(3):243-262 doi: 10.1007/BF00122381 [37] Monteith J L, Unsworth M H. 1990. Principles of Environmental Physics. 2nd ed. London: Edward Arnold [38] Perez P J,Castellvi F,Martínez-Cob A. 2008. A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux. Agri Forest Meteor,148(1):25-37 doi: 10.1016/j.agrformet.2007.08.015 [39] Qiu R J,Liu C W,Cui N B,et al. 2019. Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agric Water Manage,224:105755 doi: 10.1016/j.agwat.2019.105755 [40] Rahman M,Zhang W C,Wang K. 2019. Assessment on surface energy imbalance and energy partitioning using ground and satellite data over a semi-arid agricultural region in north China. Agric Water Manage,213:245-259 doi: 10.1016/j.agwat.2018.10.032 [41] Rana G,Katerji N,Mastrorilli M,et al. 1997. Validation of a model of actual evapotranspiration for water stressed soybeans. Agri Forest Meteor,86(3/4):215-224 doi: 10.1016/S0168-1923(97)00009-9 [42] Rodrigues T R,Vourlitis G L,de A Lobo F,et al. 2014. Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso,Brazil. J Geophys Res,119(1):1-13 [43] Sánchez J M,Caselles V,Rubio EM. 2010. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland. Hydrol Earth Syst Sci,14(8):1487-1497 doi: 10.5194/hess-14-1487-2010 [44] Sun M,Dong Q G,Jiao M Y,et al. 2018. Estimation of actual evapotranspiration in a semiarid region based on grace gravity satellite data:A case study in Loess Plateau. Remote Sens,10(12):2032 doi: 10.3390/rs10122032 [45] Tian F Q,Yang P J,Hu H C,et al. 2017. Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China. Agric Water Manage,179:110-121 doi: 10.1016/j.agwat.2016.06.029 [46] Twine T E,Kustas W P,Norman J M,et al. 2000. Correcting eddy-covariance flux underestimates over a grassland. Agri Forest Meteor,103(3):279-300 doi: 10.1016/S0168-1923(00)00123-4 [47] Wang Y,Wang C,Zhang Q. 2021. Synergistic effects of climatic factors and drought on maize yield in the east of Northwest China against the background of climate change. Theor Appl Climatol,143(3):1017-1033 [48] Wilson K B,Baldocchi D D,Aubinet M,et al. 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour Res,38(12):1294 [49] Wolf A,Saliendra N,Akshalov K,et al. 2008. Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system. Agri Forest Meteor,148(6-7):942-952 doi: 10.1016/j.agrformet.2008.01.005 [50] Yang Z S,Zhang Q,Hao X C,et al. 2019a. Changes in evapotranspiration over global semiarid regions 1984-2013. J Geophys Res,124(6):2946-2963 doi: 10.1029/2018JD029533 [51] Yang Z S,Zhang Q,Hao X C. 2019b. Environmental and biological controls on monthly and annual evapotranspiration in China's Loess Plateau. Theor Appl Climatol,137(3-4):1675-1692 doi: 10.1007/s00704-018-2701-4 [52] Yuan G H,Zhang L,Liang J N,et al. 2017. Understanding the partitioning of the available energy over the semi-arid areas of the Loess Plateau,China. Atmosphere,8(5):87 doi: 10.3390/atmos8050087 [53] Yue P,Zhang Q,Niu S J,et al. 2011. Effects of the soil heat flux estimates on surface energy balance closure over a semi-arid grassland. Acta Meteor Sinica,25(6):774-782 doi: 10.1007/s13351-011-0608-4 [54] Yue P,Zhang Q,Zhao W,et al. 2015. Influence of environmental factors on land-surface water and heat exchange during dry and wet periods in the growing season of semiarid grassland on the Loess Plateau. Sci China Earth Sci,58(11):2002-2014 doi: 10.1007/s11430-015-5133-3 [55] Yue P,Zhang Q,Yang Y,et al. 2018. Seasonal and inter-annual variability of the Bowen smith ratio over a semi-arid grassland in the Chinese Loess Plateau. Agri Forest Meteor,252:99-108 doi: 10.1016/j.agrformet.2018.01.006 [56] Yue P,Zhang Q,Zhang L,et al. 2020. Biometeorological effects on carbon dioxide and water-use efficiency within a semiarid grassland in the Chinese Loess Plateau. J Hydrol,590:125520 doi: 10.1016/j.jhydrol.2020.125520 [57] Zhang Q,Yang Z S,Hao X C,et al. 2019. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China. Climate Dyn,52(7):3891-3903 -