New progress and enlightenment on different types of drought changes from IPCC Sixth Assessment Report
-
摘要: 基于IPCC第一工作组(WGI)第六次评估报告(AR6),从干旱的定义和类型、干旱的驱动因素、监测到的干旱变化、干旱的归因以及预估5个方面进行了分析和总结。IPCC评估指出:(1)在全球变暖的背景下,监测到的气象和农业干旱的变化在全球尺度上并不显著,但干旱频发区域呈现不同程度的增加趋势。这种增加的趋势表明,人为气候变化在加剧区域干旱中的作用不容忽视。在气象干旱的变化趋势归因中,对人类活动影响的认识信度仍然不高。(2)在农业干旱和生态干旱方面,大部分区域能够归因于人类活动引起的变化(中等-高信度);在水文干旱变化中,除人为引起的气候变化外,水资源管理和土地利用也是局地影响的重要因素(中等信度)。(3)在未来的干旱预估中,全球更多的区域将经历更严重更频繁的干旱事件,农业和生态干旱也将随着升温水平的提高而变得频繁和强烈。(4)在对不同类型干旱的变化评估中,重点涉及了大气蒸发需求(AED)这一关键变量。AED的变化不仅是对气候变暖的直接响应,而且作为干旱变化的驱动因子,影响植被的生理过程,同时AED的变化也是对蒸散发变化的一种反馈。在未来气候变化不断加剧背景下,不同类型干旱间的相互作用将变得更为复杂。未来中国干旱的研究和业务应深入探究不同类型干旱变化的联系;基于多元数据和多重证据的支撑,加强跨学科研究以及干旱变化与局地人类活动影响和植被生态反馈的综合研究。Abstract: This paper reviews the definition and type of droughts, as well as their driving factors, historical changes, attributions and projections based on the Working Group I (WGI) contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) on the physical science basis of climate change. The IPCC AR6 new results show that: (1) The changes in meteorological and agricultural droughts are not significant on a global scale, but display an increasing trend in some regions. The increasing trend shows that anthropogenic climate change plays an important role in exacerbating droughts. For meteorological droughts, the understanding of the influence of human activities is of low confidence. (2) Agricultural and ecological droughts in most regions can be attributed to human activities (medium to high confidence); for hydrological droughts, in addition to human-induced climate change, regional water resources management and land use are also important factors (medium confidence). (3) In the future projections, more regions around the world will experience more severe and frequent drought events in the future. Agricultural and ecological droughts will also become more frequent and intense as the temperature rises. (4) In the analysis of assessment of changes in different types of droughts, the key variable of atmospheric evaporation demand (AED) is emphasized. Changes in AED are not only a direct response to climate warming, but also a driving factor for drought changes, affecting the physiological processes of vegetation. Meanwhile, changes in AED also feedback to evapotranspiration. The interactions between different types of droughts will become more complicated under the background of intensifying climate change. In the future, the research and operational service of droughts in China should deepen our understanding of connections between changes of different types of droughts, strengthen multi-disciplinary cooperation and explore feedback loops between drought changes, local human activities and ecological processes based on multiple datasets and various evidences.
-
Key words:
- IPCC /
- WGI /
- AR6 /
- Drought /
- Atmospheric evaporation demand
-
表 1 干旱类型相关概念
Table 1. Concept table related to drought types
干旱类型 概念 代表干旱指数 气象干旱 一个地区在一段时间内由于降水严重不足导致 SPI、CDD 农业干旱 通常指土壤湿度不断下降,从而导致农作物歉收 SMA、SSMI 生态干旱 与植物的水分胁迫有关,进而导致树木死亡 NDVI、VCI 水文干旱 由水资源短缺,如河流、湖泊、地下水短缺等导致 SGI、SRI -
[1] 陈发虎,吴绍洪,崔鹏等. 2020. 1949—2019年中国自然地理学与生存环境应用研究进展. 地理学报,75(9):1799-1830 doi: 10.11821/dlxb202009001Chen F H,Wu S H,Cui P,et al. 2020. Progress of applied research of physical geography and living environment in China from 1949 to 2019. Acta Geogr Sinica,75(9):1799-1830 (in Chinese) doi: 10.11821/dlxb202009001 [2] 封国林,杨涵洧,张世轩等. 2012. 2011年春末夏初长江中下游地区旱涝急转成因初探. 大气科学,36(5):1009-1026 doi: 10.3878/j.issn.1006-9895.2012.11220Feng G L,Yang H W,Zhang S X,et al. 2012. A preliminary research on the reason of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in late spring and early summer of 2011. Chinese J Atmos Sci,36(5):1009-1026 (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.11220 [3] 韩兰英,张强,姚玉璧等. 2014. 近60年中国西南地区干旱灾害规律与成因. 地理学报,69(5):632-639 doi: 10.11821/dlxb201405006Han L Y,Zhang Q,Yao Y B,et al. 2014. Characteristics and origins of drought disasters in Southwest China in nearly 60 years. Acta Geogr Sinica,69(5):632-639 (in Chinese) doi: 10.11821/dlxb201405006 [4] 韩兰英,张强,贾建英等. 2019. 气候变暖背景下中国干旱强度、频次和持续时间及其南北差异性. 中国沙漠,39(5):1-10Han L Y,Zhang Q,Jia J Y,et al. 2019. Drought severity,frequency,duration and regional differences in China. J Desert Res,39(5):1-10 (in Chinese) [5] 黄萌田,周佰铨,翟盘茂. 2020. 极端天气气候事件变化对荒漠化、土地退化和粮食安全的影响. 气候变化研究进展,16(1):17-27Huang M T,Zhou B Q,Zhai P M. 2020. Impacts of extreme weather and climate events on desertification,land degradation and food security. Climate Change Res,16(1):17-27 (in Chinese) [6] 姜大膀,王晓欣. 2021. 对IPCC第六次评估报告中有关干旱变化的解读. 大气科学学报,44(5):650-653Jiang D B,Wang X X. 2021. A brief interpretation of drought change from IPCC Sixth Assessment Report. Trans Atmos Sci,44(5):650-653 (in Chinese) [7] 马柱国. 2007. 华北干旱化趋势及转折性变化与太平洋年代际振荡的关系. 科学通报, 52(10): 1199-1206.Ma Z G. 2007. The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO). Chinese Sci Bull, 52(15): 2130-2139 [8] 马柱国,符淙斌,杨庆等. 2018. 关于我国北方干旱化及其转折性变化. 大气科学,42(4):951-961Ma Z G,Fu C B,Yang Q,et al. 2018. Drying trend in Northern China and its shift during 1951-2016. Chinese J Atmos Sci,42(4):951-961 (in Chinese) [9] 闫昕旸,张强,闫晓敏等. 2019. 全球干旱区分布特征及成因机制研究进展. 地球科学进展,34(8):826-841Yan X Y,Zhang Q,Yan X M,et al. 2019. An overview of distribution characteristics and formation mechanisms in global arid areas. Adv Earth Sci,34(8):826-841 (in Chinese) [10] 张强,姚玉璧,李耀辉等. 2020. 中国干旱事件成因和变化规律的研究进展与展望. 气象学报,78(3):500-521 doi: 10.11676/qxxb2020.032Zhang Q,Yao Y B,Li Y H,et al. 2020. Progress and prospect on the study of causes and variation regularity of droughts in China. Acta Meteor Sinica,78(3):500-521 (in Chinese) doi: 10.11676/qxxb2020.032 [11] 张强,谢五三,陈鲜艳等. 2021. 1961—2019年长江中下游区域性干旱过程及其变化. 气象学报,79(4):570-581 doi: 10.11676/qxxb2021.035Zhang Q,Xie W S,Chen X Y,et al. 2021. Regional drought process and its variation characteristics in the middle-lower reaches of the Yangtze River from 1961 to 2019. Acta Meteor Sinica,79(4):570-581 (in Chinese) doi: 10.11676/qxxb2021.035 [12] AghaKouchak A,Mirchi A,Madani K,et al. 2021. Anthropogenic drought:Definition,challenges,and opportunities. Rev Geophys,59(2):e2019RG000683 [13] Althoff D,Rodrigues L N,da Silva D D. 2020. Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah. Climatic Change,159(2):215-232 doi: 10.1007/s10584-020-02656-y [14] Bachofen C,Moser B,Hoch G,et al. 2018. No carbon "bet hedging" in pine seedlings under prolonged summer drought and elevated CO2. J Ecol,106(1):31-46 doi: 10.1111/1365-2745.12822 [15] Dai A G. 2011. Drought under global warming:A review. WIRs Climate Change,2(1):45-65 doi: 10.1002/wcc.81 [16] Dai A G. 2013. Increasing drought under global warming in observations and models. Nat Climate Change,3(1):52-58 doi: 10.1038/nclimate1633 [17] Dai A G,Zhao T B. 2017. Uncertainties in historical changes and future projections of drought. Part Ⅰ:Estimates of historical drought changes. Climatic Change,144(3):519-533 doi: 10.1007/s10584-016-1705-2 [18] Derouin,S. 2021. Simultaneous drought and heat wave events are becoming more common. Eos,102 [19] Douville H, Raghavan K, Renwick J, et al. 2021. Water cycle changes∥Masson-Delmotte V, Zhai P, Pirani A, et al. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press (in press) [20] FAO. 1983. Guidelines: Land evaluation for rainfed agriculture∥FAO Soils Bulletin 52. Rome: FAO [21] Funk C,Davenport F,Harrison L,et al. 2018. Anthropogenic enhancement of moderate-to-strong El Niño events likely contributed to drought and poor harvests in Southern Africa during 2016. Bull Amer Meteor Soc,99(1):S91-S96 doi: 10.1175/BAMS-D-17-0112.1 [22] Gimeno L,Stohl A,Trigo R M,et al. 2012. Oceanic and terrestrial sources of continental precipitation. Rev Geophys,50(4):RG4003 [23] GUMBEL E J. 1963. Statistical forecast of droughts. International Association of Scientific Hydrology. Bulletin,8:1,5-23 [24] Hegerl G C, Hoegh-Guldberg O, Casassa G, et al. 2010. Good practice guidance paper on detection and attribution related to anthropogenic climate change∥IPCC Expert Meeting on Detection and Attribution Related to Anthropogenic Climate Change 2010. Bern, Switzerland: Intergovernmental Panel on Climate Change (IPCC) Working Group [25] Huang J P,Yu H P,Dai A G,et al. 2017. Drylands face potential threat under 2°C global warming target. Nat Climate Change,7(6):417-422 doi: 10.1038/nclimate3275 [26] Huang J P,Ma J R,Guan X D,et al. 2019. Progress in semi-arid climate change studies in China. Adv Atmos Sci,36(9):922-937 doi: 10.1007/s00376-018-8200-9 [27] Huang M T,Zhai P M,Piao S L. 2021. Divergent responses of ecosystem water use efficiency to drought timing over Northern Eurasia. Environ Res Lett,16(4):045016 doi: 10.1088/1748-9326/abf0d1 [28] IPCC. 2001. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovern- mental Panel on Climate Change. Cambridge:Cambridge University Press,881pp [29] IPCC. 2007. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,996pp [30] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press [31] Kingston D G,Stagge J H,Tallaksen L M,et al. 2015. European-scale drought:Understanding connections between atmospheric circulation and meteorological drought indices. J Climate,28(2):505-516 doi: 10.1175/JCLI-D-14-00001.1 [32] Li Y,Piao S L,Li L Z X,et al. 2018. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci Adv,4(5):eaar4182 doi: 10.1126/sciadv.aar4182 [33] Liu X M,Luo Y Z,Zhang D,et al. 2011. Recent changes in pan-evaporation dynamics in China. Geophys Res Lett,38(13):L13404 [34] Mishra A K,Singh V P. 2010. A review of drought concepts. J Hydrol,391(1-2):202-216 doi: 10.1016/j.jhydrol.2010.07.012 [35] Mueller B,Zhang X B. 2016. Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data. Climatic Change,134(1-2):255-267 doi: 10.1007/s10584-015-1499-7 [36] Otkin J A,Svoboda M,Hunt E D,et al. 2018. Flash droughts:A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull Amer Meteor Soc,99(5):911-919 doi: 10.1175/BAMS-D-17-0149.1 [37] Palmer W C. 1965. Meteorological drought. Research Paper No. 45, Washington: US Department of Commerce Weather Bureau, 58 [38] Pendergrass A G,Meehl G A,Pulwarty R,et al. 2020. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change,10(3):191-199 [39] Poshtiri M P,Pal I. 2016. Patterns of hydrological drought indicators in major U. S. River basins. Climatic Change,134(4):549-563 doi: 10.1007/s10584-015-1542-8 [40] Qian C,Zhou T J. 2014. Multidecadal variability of North China aridity and its relationship to PDO during 1900-2010. J Climate,27(3):1210-1222 doi: 10.1175/JCLI-D-13-00235.1 [41] Schneider S H. 1996. Encyclopedia of Climate and Weather. New York: Oxford University Press [42] Schubert S D,Stewart R E,Wang H L,et al. 2016. Global meteorological drought:A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J Climate,29(11):3989-4019 doi: 10.1175/JCLI-D-15-0452.1 [43] Seager R,Hooks A,Williams A P,et al. 2015. Climatology,variability,and trends in the U. S. vapor pressure deficit,an important fire-related meteorological quantity. J Appl Meteor Climatol,54(6):1121-1141 doi: 10.1175/JAMC-D-14-0321.1 [44] Seager R,Nakamura J,Ting M F. 2019. Mechanisms of seasonal soil moisture drought onset and termination in the southern Great Plains. J Hydrometeorol,20(4):751-771 doi: 10.1175/JHM-D-18-0191.1 [45] Seneviratne S I, Zhang X, Adnan M, et al. 2021. Weather and climate extreme events in a changing climate∥Masson-Delmotte V, Zhai P, Pirani A, et al. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press (in press) [46] Sousa P M,Trigo R M,Barriopedro D,et al. 2017. Responses of European precipitation distributions and regimes to different blocking locations. Climate Dyn,48(3):1141-1160 [47] Spinoni J,Barbosa P,Bucchignani E,et al. 2020. Future global meteorological drought hot spots:A study based on CORDEX data. J Climate,33(9):3635-3661 doi: 10.1175/JCLI-D-19-0084.1 [48] Su B D,Huang J L,Fischer T,et al. 2018. Drought losses in China might double between the 1.5°C and 2.0°C warming. Proc Natl Acad Sci USA,115(42):10600-10605 doi: 10.1073/pnas.1802129115 [49] Sun P,Zhang Q,Wen Q Z,et al. 2017. Multisource data-based integrated agricultural drought monitoring in the Huai River Basin,China. J Geophys Res:Atmos,122(20):10751-10772 doi: 10.1002/2017JD027186 [50] Trigo R M,Añel J A,Barriopedro D,et al. 2013. The record winter drought of 2011-12 in the Iberian Peninsula. Bull Amer Meteor Soc,94(9):S41-S45 [51] Tuttle S,Salvucci G. 2016. Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science,352(6287):825-828 doi: 10.1126/science.aaa7185 [52] UNEP. 1994. United Nations convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa [53] United Nations Office for Disaster Risk Reduction. 2021. GAR Special Report on Drought 2021. Geneva [54] Van Lanen H A J, Peters E. 2000. Definition, effects and assessment of groundwater droughts∥Vogt J V, Somma F. Drought and Drought Mitigation in Europe. Dordrecht: Springer [55] Van Loon A F. 2015. Hydrological drought explained. WIRs Water,2(4):359-392 doi: 10.1002/wat2.1085 [56] Wang C P,Huang M T,Zhai P M. 2021. Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau. Adv Climate Change Res,12(3):333-341 doi: 10.1016/j.accre.2021.04.004 [57] Wang L,Chen W,Zhou W,et al. 2016. Understanding and detecting super-extreme droughts in southwest China through an integrated approach and index. Quart J Roy Meteor Soc,142(694):529-535 doi: 10.1002/qj.2593 [58] Wang L Y,Yuan X. 2018. Two types of flash drought and their connections with seasonal drought. Adv Atmos Sci,35(12):1478-1490 doi: 10.1007/s00376-018-8047-0 [59] Wang W,Lee X H,Xiao W,et al. 2018. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat Geosci,11(6):410-414 doi: 10.1038/s41561-018-0114-8 [60] Wilhite D A. 2000. Chapter 1 Drought as a natural hazard:Concepts and definitions. Drought Mitigation Center Faculty Publications,69 [61] WMO. 1986. Report on drought and countries affected by drought during 1974-1985. Geneva: WMO [62] Xu C X,An W L,Wang S Y S,et al. 2019. Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole. Sci Total Environ,661:645-653 doi: 10.1016/j.scitotenv.2019.01.186 [63] Yu R,Zhai P M. 2020. More frequent and widespread persistent compound drought and heat event observed in China. Sci Rep,10(1):14576 doi: 10.1038/s41598-020-71312-3 [64] Zhang C G,Liu F G,Shen Y J. 2018. Attribution analysis of changing pan evaporation in the Qinghai-Tibetan Plateau,China. Int J Climatol,38(S1):e1032-e1043 -