留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预估-校正的半隐式半拉格朗日时间积分方案及其在CMA-GFS模式中的应用

张红亮 沈学顺 苏勇

张红亮,沈学顺,苏勇. 2022. 预估-校正的半隐式半拉格朗日时间积分方案及其在CMA-GFS模式中的应用. 气象学报,80(2):280-288 doi: 10.11676/qxxb2022.021
引用本文: 张红亮,沈学顺,苏勇. 2022. 预估-校正的半隐式半拉格朗日时间积分方案及其在CMA-GFS模式中的应用. 气象学报,80(2):280-288 doi: 10.11676/qxxb2022.021
Zhang Hongliang, Shen Xueshun, Su Yong. 2022. A semi-implicit semi-Lagrangian time integration schemes with a predictor and a corrector and their applications in CMA-GFS. Acta Meteorologica Sinica, 80(2):280-288 doi: 10.11676/qxxb2022.021
Citation: Zhang Hongliang, Shen Xueshun, Su Yong. 2022. A semi-implicit semi-Lagrangian time integration schemes with a predictor and a corrector and their applications in CMA-GFS. Acta Meteorologica Sinica, 80(2):280-288 doi: 10.11676/qxxb2022.021

预估-校正的半隐式半拉格朗日时间积分方案及其在CMA-GFS模式中的应用

doi: 10.11676/qxxb2022.021
基金项目: 国家重点研发计划项目(2017YFC1501901、2018YFC1505705)
详细信息
    作者简介:

    张红亮,主要从事数值预报研究。E-mail:zhanghl@cma.gov.cn

    通讯作者:

    沈学顺,主要从事数值预报研究。E-mail: shenxs@cma.gov.cn

  • 中图分类号:  P435

A semi-implicit semi-Lagrangian time integration schemes with a predictor and a corrector and their applications in CMA-GFS

  • 摘要: CMA-GFS采用的是传统的二时间层半隐式半拉格朗日时间积分方案(SISL)。拉格朗日平流速度和非线性项需要采用时间外插进行计算,在急流轴附近等梯度大值区会造成计算不稳定,甚至积分中断现象。文中通过构造预估-校正半隐式半拉格朗日时间积分方案(SISL/P-C),以减少时间外插的影响;半隐式系数由原来的0.72减小到0.55,构造准二阶精度的时间积分方案。理想试验和实际资料试验证明新方案可以改善CMA-GFS的精确度、稳定性和质量守恒。0.25°水平分辨率下积分时间步长可以由300 s 增大到450 s,模式总体计算效率提高20%。

     

  • 图 1  Rossby-Haurhawtz波试验积分15 d后700 hPa高度场 (a. 对照试验,b. SISL/P-C试验;单位:gpm)

    Figure 1.  700 hPa height in the Rossby-Haurhawtz wave experiment after 15 d of integration (a. control,b. SISL/P-C;unit:gpm)

    图 2  Rossby-Haurhawtz波试验 (40°S—40°N,10°—110°E) 积分15 d后700 hPa高度场 (黑色:初始值, 红色:对照试验,绿色:SISL/P-C )

    Figure 2.  700 hPa height in the Rossby-Haurhawtz wave experiment (40°S—40°N,10°—110°E) after 15 d of integration (black:initial value,red:control,green:SISL/P-C)

    图 3  地形激发的罗斯贝波传播15 d 后700 hPa高度场 (a1、a2:对照试验,b1、b2. SISL/P-C;a1、b1. 1200 s,a2、b2. 600 s;单位:gpm)

    Figure 3.  700 hPa height in the mountain-induced Rossby wave experiment after 15 d of integration (a1,a2. control,b1,b2. SISL/P-C; a1,b1. 1200 s,a2,b2. 600 s;unit:gpm)

    图 4  地形激发的罗斯贝波传播15 d 后700 hPa (EQ—70°N,80°—160°E) 高度场 (实线:600 s,虚线:1200 s;黑色:对照试验,红色:SISL/P-C;单位:gpm)

    Figure 4.  700 hPa height (EQ—70°N,80° —160°E) in the mountain-induced Rossby wave experiment after 15 d of integration (solid:600 s,dashed:1200 s; black:control, red:SISL/P-C; unit:gpm)

    图 5  地形激发的罗斯贝波传播0—15 d 平均地面气压变化 (黑色:对照试验,红色:SISL/P-C;实线:600 s,虚线:1200 s;单位:hPa)

    Figure 5.  Averaged surface pressure changes over 0—15 d in the mountain-induced Rossby wave experiment (black:control,red:SISL/P-C;solid line:600 s,dashed line:1200 s;unit:hPa)

    图 6  斜压波试验模式积分9天850 hPa上的温度场 (单位:K)(a.对照试验,b. SISL/P-C;单位:K)

    Figure 6.  850 hPa temperature in the baroclinic wave experiment after 9 d of integration (a. control, b. SISL/P-C;unit:K)

    图 7  斜压波试验模式积分9天850 hPa (30—70°N,120°E —120°W) 温度场 (a. 对照试验,b. SISL/P-C;黑色:600 s,蓝色:1200 s,红色:1800 s;单位:K)

    Figure 7.  850 hPa temperature (30°—70°N,120°E—120°W) in the baroclinic wave experiment after 9 d of integration (a. control,b. SISL/ P-C;black:600 s,blue:1200 s,red:1800 s;unit:K)

    图 8  2018年7月12日12时 (世界时) 起报72 h预报的500 hPa高度场 (黑色线:SISL/P-C,红色线:对照试验;实线:300 s,虚线:450 s;单位:gpm)

    Figure 8.  500 hPa height after 72 h of integration starting from 12:00 UTC 12 July 2018 (solid:300 s,dash:450 s;black:SISL/P-C,red:control;unit:gpm)

    图 9  2018年7月平均5 d 预报500 hPa高度场距平相关系数 (a) 和偏差 (b)

    Figure 9.  Anomaly correlations (a) and biases (b) of averaged 5 d 500 hPa height field in July 2018

    图 10  SISL/P-C预报试验的综合评分卡 (a. 300 s,b. 450 s)

    Figure 10.  Comprehensive scoring cards for prediction experiment of SISL/P-C (a. 300 s,b. 450 s)

    图 11  2018年7月全球平均的海平面气压随时间的变化

    Figure 11.  Changes of global mean sea level pressure over time in July 2018

  • [1] 陈德辉,沈学顺. 2006. 新一代数值预报系统GRAPES研究进展. 应用气象学报,17(6):773-777 doi: 10.3969/j.issn.1001-7313.2006.06.014

    Chen D H,Shen X S. 2006. Recent progress on GRAPES research and application. J Appl Meteor Sci,17(6):773-777 (in Chinese) doi: 10.3969/j.issn.1001-7313.2006.06.014
    [2] 陈子通,徐道生,戴光丰等. 2020. 热带高分辨率模式(TRAMS-V3.0)技术方案及其系统预报性能. 热带气象学报,36(4):444-454

    Chen Z T,Xu D S,Dai G F,et al. 2020. Technical scheme and operational system of tropical high-resolution model (TRAMS-V3.0). J Trop Meteor,36(4):444-454 (in Chinese)
    [3] 宫宇,代刊,徐珺等. 2018. GRAPES-GFS模式暴雨预报天气学检验特征. 气象,44(9):1148-1159 doi: 10.7519/j.issn.10000526.2018.09.003

    Gong Y,Dai K,Xu J,et al. 2018. Synoptic verification characteristics of operational GRAPES-GFS model heavy rain event forecast. Meteor Mon,44(9):1148-1159 (in Chinese) doi: 10.7519/j.issn.10000526.2018.09.003
    [4] 马占山,刘奇俊,秦琰琰. 2016. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估. 高原气象,35(4):989-1003

    Ma Z S,Liu Q J,Qin Y Y. 2016. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRPAES_GFS model. Plateau Meteor,35(4):989-1003 (in Chinese)
    [5] 沈学顺,苏勇,胡江林等. 2017. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报,28(1):1-10 doi: 10.11898/1001-7313.20170101

    Shen X S,Su Y,Hu J L,et al. 2017. Development and operation transformation of GRAPES Global Middle-range Forecast System. J Appl Meteor Sci,28(1):1-10 (in Chinese) doi: 10.11898/1001-7313.20170101
    [6] 苏勇,沈学顺,陈子通等. 2018. GRAPES_GFS中三维参考大气的研究:理论设计和理想试验. 气象学报,76(2):241-254 doi: 10.11676/qxxb2017.097

    Su Y,Shen X S,Chen Z T,et al. 2018. A study on the three-dimensional reference atmosphere in GRAPES_GFS:Theoretical design and ideal test. Acta Meteor Sinica,76(2):241-254 (in Chinese) doi: 10.11676/qxxb2017.097
    [7] 苏勇,沈学顺,张红亮等. 2020. GRAPES_GFS中三维参考大气的研究:参考态构造和实际预报试验. 气象学报,78(6):962-971 doi: 10.11676/qxxb2020.075

    Su Y,Shen X S,Zhang H L,et al. 2020. A study on the three-dimensional reference atmosphere in GRAPES_GFS:Constructive reference state and real forecast experiment. Acta Meteor Sinica,78(6):962-971 (in Chinese) doi: 10.11676/qxxb2020.075
    [8] 薛纪善,陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京:科学出版社,69-109

    Xue J S,Chen D H. 2008. Scientific Design and Application of GRAPES. Beijing:Science Press,69-109 (in Chinese)
    [9] Coiffier J,Chapelet P,Marie N. 1987. Study of various quasi-Lagrangian techniques for numerical models∥Techniques for Horizontal Discretiza- tion in Numerical Weather Prediction Models. ECMWF workshop proceedings. Reading,UK: ECMWF,19-46
    [10] Côte J,Gravel S,Méthot A,et al. 1998. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part Ⅰ:Design considerations and formulation. Mon Wea Rev,126(6):1373-1395 doi: 10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2
    [11] Cullen M J P. 2001. Alternative implementations of the semi-Lagrangian semi-implicit schemes in the ECMWF model. Quart J Roy Meteor Soc,127(578):2787-2802 doi: 10.1002/qj.49712757814
    [12] Davies T,Cullen M J P,Malcolm A J,et al. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quart J Roy Meteor Soc,131(608):1759-1782 doi: 10.1256/qj.04.101
    [13] Diamantakis M,Davies T,Wood N. 2007. An iterative time-stepping scheme for the Met Office's semi-implicit semi-Lagrangian non-hydrostatic model. Quart J Roy Meteor Soc,133(625):997-1011 doi: 10.1002/qj.59
    [14] Durran D R,Bretherton C. 2004. Comments on "the roles of the horizontal component of the earth's angular velocity in nonhydrostatic linear models". J Atmos Sci,61(15):1982-1986 doi: 10.1175/1520-0469(2004)061<1982:COTROT>2.0.CO;2
    [15] Hortal M. 2002. The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart J Roy Meteor Soc,128(583):1671-1687 doi: 10.1002/qj.200212858314
    [16] Jablonowski C,Lauritzen P,Nair R,et al. 2008. Idealized test cases for the dynamical cores of atmospheric general circulation models:A proposal for the NCAR ASP 2008 summer colloquium. NCAR ASP summer Colloquium,28-34
    [17] Kar S K. 2012. An explicit time-difference scheme with an Adams-Bashforth predictor and a trapezoidal corrector. Mon Wea Rev,140(1):307-322 doi: 10.1175/MWR-D-10-05066.1
    [18] Kurihara Y. 1965. On the use of implicit and iterative methods for the time integration of the wave equation. Mon Wea Rev,93(1):33-46 doi: 10.1175/1520-0493(1965)093<0033:OTUOIA>2.3.CO;2
    [19] Ritchie H,Temperton C,Simmons A,et al. 1995. Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon Wea Rev,123(2):489-514 doi: 10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2
    [20] Robert A. 1981. A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean,19(1):35-46 doi: 10.1080/07055900.1981.9649098
    [21] Robert A,Yee T L,Ritchie H. 1985. A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon Wea Rev,113(3):388-394 doi: 10.1175/1520-0493(1985)113<0388:ASLASI>2.0.CO;2
    [22] Temperton C,Hortal M,Simmons A. 2001. A two-time-level semi-lagrangian global spectral model. Quart J Roy Meteor Soc,127(571):111-127 doi: 10.1002/qj.49712757107
    [23] Thuburn J,Li Y. 2000. Numerical simulations of Rossby-Haurwitz waves. Tellus A,52(2):181-189 doi: 10.3402/tellusa.v52i2.12258
    [24] Wood N,Staniforth A,White A,et al. 2014. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart J Roy Meteor Soc,140(682):1505-1520 doi: 10.1002/qj.2235
    [25] Yeh K S,Côté J,Gravel S,et al. 2002. The CMC–MRB global environmental multiscale (GEM) model. Part Ⅲ:Nonhydrostatic formulation. Mon Wea Rev,130(2):339-356 doi: 10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2
  • 加载中
图(11)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  87
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 录用日期:  2022-02-28
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回