[1] |
陈德辉,沈学顺. 2006. 新一代数值预报系统GRAPES研究进展. 应用气象学报,17(6):773-777 doi: 10.3969/j.issn.1001-7313.2006.06.014Chen D H,Shen X S. 2006. Recent progress on GRAPES research and application. J Appl Meteor Sci,17(6):773-777 (in Chinese) doi: 10.3969/j.issn.1001-7313.2006.06.014
|
[2] |
陈子通,徐道生,戴光丰等. 2020. 热带高分辨率模式(TRAMS-V3.0)技术方案及其系统预报性能. 热带气象学报,36(4):444-454Chen Z T,Xu D S,Dai G F,et al. 2020. Technical scheme and operational system of tropical high-resolution model (TRAMS-V3.0). J Trop Meteor,36(4):444-454 (in Chinese)
|
[3] |
宫宇,代刊,徐珺等. 2018. GRAPES-GFS模式暴雨预报天气学检验特征. 气象,44(9):1148-1159 doi: 10.7519/j.issn.10000526.2018.09.003Gong Y,Dai K,Xu J,et al. 2018. Synoptic verification characteristics of operational GRAPES-GFS model heavy rain event forecast. Meteor Mon,44(9):1148-1159 (in Chinese) doi: 10.7519/j.issn.10000526.2018.09.003
|
[4] |
马占山,刘奇俊,秦琰琰. 2016. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估. 高原气象,35(4):989-1003Ma Z S,Liu Q J,Qin Y Y. 2016. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRPAES_GFS model. Plateau Meteor,35(4):989-1003 (in Chinese)
|
[5] |
沈学顺,苏勇,胡江林等. 2017. GRAPES_GFS全球中期预报系统的研发和业务化. 应用气象学报,28(1):1-10 doi: 10.11898/1001-7313.20170101Shen X S,Su Y,Hu J L,et al. 2017. Development and operation transformation of GRAPES Global Middle-range Forecast System. J Appl Meteor Sci,28(1):1-10 (in Chinese) doi: 10.11898/1001-7313.20170101
|
[6] |
苏勇,沈学顺,陈子通等. 2018. GRAPES_GFS中三维参考大气的研究:理论设计和理想试验. 气象学报,76(2):241-254 doi: 10.11676/qxxb2017.097Su Y,Shen X S,Chen Z T,et al. 2018. A study on the three-dimensional reference atmosphere in GRAPES_GFS:Theoretical design and ideal test. Acta Meteor Sinica,76(2):241-254 (in Chinese) doi: 10.11676/qxxb2017.097
|
[7] |
苏勇,沈学顺,张红亮等. 2020. GRAPES_GFS中三维参考大气的研究:参考态构造和实际预报试验. 气象学报,78(6):962-971 doi: 10.11676/qxxb2020.075Su Y,Shen X S,Zhang H L,et al. 2020. A study on the three-dimensional reference atmosphere in GRAPES_GFS:Constructive reference state and real forecast experiment. Acta Meteor Sinica,78(6):962-971 (in Chinese) doi: 10.11676/qxxb2020.075
|
[8] |
薛纪善,陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用. 北京:科学出版社,69-109Xue J S,Chen D H. 2008. Scientific Design and Application of GRAPES. Beijing:Science Press,69-109 (in Chinese)
|
[9] |
Coiffier J,Chapelet P,Marie N. 1987. Study of various quasi-Lagrangian techniques for numerical models∥Techniques for Horizontal Discretiza- tion in Numerical Weather Prediction Models. ECMWF workshop proceedings. Reading,UK: ECMWF,19-46
|
[10] |
Côte J,Gravel S,Méthot A,et al. 1998. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part Ⅰ:Design considerations and formulation. Mon Wea Rev,126(6):1373-1395 doi: 10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2
|
[11] |
Cullen M J P. 2001. Alternative implementations of the semi-Lagrangian semi-implicit schemes in the ECMWF model. Quart J Roy Meteor Soc,127(578):2787-2802 doi: 10.1002/qj.49712757814
|
[12] |
Davies T,Cullen M J P,Malcolm A J,et al. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quart J Roy Meteor Soc,131(608):1759-1782 doi: 10.1256/qj.04.101
|
[13] |
Diamantakis M,Davies T,Wood N. 2007. An iterative time-stepping scheme for the Met Office's semi-implicit semi-Lagrangian non-hydrostatic model. Quart J Roy Meteor Soc,133(625):997-1011 doi: 10.1002/qj.59
|
[14] |
Durran D R,Bretherton C. 2004. Comments on "the roles of the horizontal component of the earth's angular velocity in nonhydrostatic linear models". J Atmos Sci,61(15):1982-1986 doi: 10.1175/1520-0469(2004)061<1982:COTROT>2.0.CO;2
|
[15] |
Hortal M. 2002. The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart J Roy Meteor Soc,128(583):1671-1687 doi: 10.1002/qj.200212858314
|
[16] |
Jablonowski C,Lauritzen P,Nair R,et al. 2008. Idealized test cases for the dynamical cores of atmospheric general circulation models:A proposal for the NCAR ASP 2008 summer colloquium. NCAR ASP summer Colloquium,28-34
|
[17] |
Kar S K. 2012. An explicit time-difference scheme with an Adams-Bashforth predictor and a trapezoidal corrector. Mon Wea Rev,140(1):307-322 doi: 10.1175/MWR-D-10-05066.1
|
[18] |
Kurihara Y. 1965. On the use of implicit and iterative methods for the time integration of the wave equation. Mon Wea Rev,93(1):33-46 doi: 10.1175/1520-0493(1965)093<0033:OTUOIA>2.3.CO;2
|
[19] |
Ritchie H,Temperton C,Simmons A,et al. 1995. Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon Wea Rev,123(2):489-514 doi: 10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2
|
[20] |
Robert A. 1981. A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean,19(1):35-46 doi: 10.1080/07055900.1981.9649098
|
[21] |
Robert A,Yee T L,Ritchie H. 1985. A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon Wea Rev,113(3):388-394 doi: 10.1175/1520-0493(1985)113<0388:ASLASI>2.0.CO;2
|
[22] |
Temperton C,Hortal M,Simmons A. 2001. A two-time-level semi-lagrangian global spectral model. Quart J Roy Meteor Soc,127(571):111-127 doi: 10.1002/qj.49712757107
|
[23] |
Thuburn J,Li Y. 2000. Numerical simulations of Rossby-Haurwitz waves. Tellus A,52(2):181-189 doi: 10.3402/tellusa.v52i2.12258
|
[24] |
Wood N,Staniforth A,White A,et al. 2014. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart J Roy Meteor Soc,140(682):1505-1520 doi: 10.1002/qj.2235
|
[25] |
Yeh K S,Côté J,Gravel S,et al. 2002. The CMC–MRB global environmental multiscale (GEM) model. Part Ⅲ:Nonhydrostatic formulation. Mon Wea Rev,130(2):339-356 doi: 10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2
|