留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征

孟露 赵天良 何清 杨兴华 买买提艾力·买买提依明 杨帆 周成龙 霍文 王敏仲 潘红林 杨婕

孟露,赵天良,何清,杨兴华,买买提艾力·买买提依明,杨帆,周成龙,霍文,王敏仲,潘红林,杨婕. 2022. 近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征. 气象学报,80(2):322-333 doi: 10.11676/qxxb2022.022
引用本文: 孟露,赵天良,何清,杨兴华,买买提艾力·买买提依明,杨帆,周成龙,霍文,王敏仲,潘红林,杨婕. 2022. 近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征. 气象学报,80(2):322-333 doi: 10.11676/qxxb2022.022
Meng Lu, Zhao Tianliang, He Qing, Yang Xinghua, Mamtimin Ali, Yang Fan, Zhou Chenglong, Huo Wen, Wang Minzhong, Pan Honglin, Yang Jie. 2022. Climatic characteristics of floating dust and persistent floating dust over the Tarim basin in the recent 30 years. Acta Meteorologica Sinica, 80(2):322-333 doi: 10.11676/qxxb2022.022
Citation: Meng Lu, Zhao Tianliang, He Qing, Yang Xinghua, Mamtimin Ali, Yang Fan, Zhou Chenglong, Huo Wen, Wang Minzhong, Pan Honglin, Yang Jie. 2022. Climatic characteristics of floating dust and persistent floating dust over the Tarim basin in the recent 30 years. Acta Meteorologica Sinica, 80(2):322-333 doi: 10.11676/qxxb2022.022

近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征

doi: 10.11676/qxxb2022.022
基金项目: 国家自然科学基金项目(41905014、42030612、41875019)、新疆气象局引导性计划项目(YD202206)、新疆气象局高层次人才项目(2021-46)、中亚大气科学研究基金项目(CAAS201913)
详细信息
    作者简介:

    孟露,主要从事沙漠大气边界层数值模拟。E-mail:menglu@idm.cn

    通讯作者:

    赵天良,主要从事大气物理与大气环境研究。E-mail:tlzhao@nuist.edu.cn

  • 中图分类号: P461+.3

Climatic characteristics of floating dust and persistent floating dust over the Tarim basin in the recent 30 years

  • 摘要: 塔里木盆地沙尘天气具有独特的持续浮尘滞空区域特征。目前塔里木盆地浮尘天气的气候学特征认知依然停留在1990年,亟待认知近30年塔里木盆地浮尘天气的变化特征。因此,利用1991—2020年塔里木盆地27个观测站浮尘天气观测资料,分析塔里木盆地近30年浮尘天气的时、空变化特征,并给出盆地持续浮尘天气的频次分布,以加深对塔里木盆地浮尘“滞空”变化特征的认识。近30年(1991—2020年)塔里木盆地浮尘日数年际变化趋势呈“V”型特征,即1991—2011年浮尘天气呈现整体下降趋势,但2012年以来反转为上升趋势。塔里木盆地南部皮山—和田—策勒—民丰一线地区维持一个浮尘天气频发区的极值中心,且进入21世纪以来,盆地南部这一浮尘天气频发区的极值中心东移至民丰地区,中心值为152 d。塔里木盆地浮尘天气具有独特的区域特征,近30年盆地持续2 d及其以上的浮尘天气占浮尘日总数的64.25%。塔里木盆地南部和田与策勒等地,甚至出现持续30 d以上的月时间尺度持续性极端浮尘事件。给出了一个值得关注的塔里木盆地浮尘“滞空”的沙尘气候特征。

     

  • 图 1  塔里木盆地及周边27个观测站点位置 (色阶为海拔高度)

    Figure 1.  Geographic locations of 27 observation sites over the Tarim basin and its surrounding areas and terrain elevation (color shaded)

    图 2  近30年塔里木盆地及周边年平均浮尘天气日数 (单位:d) 空间分布 (彩色散点代表浮尘天气日数;色阶表示海拔高度;“皮山-和田-策勒-民丰”一线用紫色箭头标出)

    Figure 2.  Spatial distribution of floating dust days over the Tarim basin and its surrounding areas averaged in the recent 30 years (Color scatter points represent floating dust days,and color shadings show terrain elevation;the line "Pishan-Hotan-Cele-Minfeng" is marked by the purple arrow)

    图 3  1991—2020年塔里木盆地平均浮尘天气日数的年际变化趋势 (灰色柱) 及1991—2010年拟合曲线y1 (绿色直线),2011—2020年拟合曲线y2 (橙色直线),Savitzky-Golay平滑曲线 (红色虚线)

    Figure 3.  Interannual variation trend of floating dust days (d) in the Tarim basin averaged from 1991 to 2020 (gray colum bars),fitting curve y1 from 1991 to 2010 (green line),fitting curve y2 from 2011 to 2020 (orange line), and Savitzky-Golay smooth curve (red dotted line)

    图 4  1991—2020年塔里木盆地各季 (a. 春季,b. 夏季,c. 秋季,d. 冬季) 平均浮尘日数的年际变化及拟合曲线 (y1:蓝色直线,y2:红色直线)

    Figure 4.  Interannual variation trends and fitting curves of floating dust days in (a) spring, (b) summer, (c) autumn, and (d) winter over the Tarim Basin averaged from 1991 to 2020 (y1:blue line,y2:red line)

    图 5  1991—2020年塔里木盆地平均浮尘天气日数及标准偏差的月际变化 (红色圆点代表平均浮尘天气日数,黑色竖线到圆点的距离代表标准差)

    Figure 5.  Monthly variation of floating dust days and standard deviation in the Tarim Basin averaged from 1991 to 2020 (The red dots represent the average number of floating dust days,and the distance from the black vertical lines to the red dots represent the standard deviation)

    图 7  塔里木盆地不同站点浮尘天气日数的年代际变化趋势 (a. 逐年代递增型, b. 逐年代递减型,c. 21世纪初期最多型, d. 21世纪初期最少型)

    Figure 7.  Interdecadal variation trend of floating dust days at different stations in the Tarim basin (a. the increasing type year by year,b. the decreasing type year by year,c. the most frequent type in the early 21st century,d. the least frequency type in the early 21st century)

    图 8  1991—2020年塔里木盆地浮尘天气日数年代际变化的空间分布

    Figure 8.  Spatial distribution of interdecadal variation of floating dust days in the Tarim basin from 1991 to 2020

    图 9  1991—2020年塔里木盆地持续2 d及以上 (a) 和持续10 d及以上 (b) 持续性浮尘天气的频次分布 (次数:灰色柱,百分比:红色点线)

    Figure 9.  Frequency distribution of persistent floating dust lasting for 2 d or more (a),and lasting for 10 d or more (b) in the Tarim basin from 1991 to 2020 (occurrence times:gray column bars, percentage:red dotted line)

    图 10  1991—2020年塔里木盆地持续2—5 d (a)、持续6—10 d (b)、持续11—30 d (c)、持续31 d及以上 (d) 浮尘天气频次的空间分布 (彩色散点代表不同持续浮尘天气出现次数,色阶表示海拔高度)

    Figure 10.  Spatial distribution of persistent floating dust frequency (a) lasting for 2—5 d, (b) lasting for 6—10 d,(c) lasting for 11—30 d,and (d) lasting for 31 d or more in the Tarim basin from 1991 to 2020 (color scatter points represent the occurrence times of different persistent floating dust,and color shadings represent terrain elevation)

    表  1  塔里木盆地及周边27个观测站站点信息

    Table  1.   Information of 27 observation stations over the Tarim basin and its surrounding areas

    序号站点序号站点序号站点序号站点序号站点
    1轮台2库尔勒3尉犁4铁干里克5若羌
    6且末7塔中8库车9阿克苏10阿拉尔
    11柯坪12巴楚13麦盖提14岳普湖15喀什
    16莎车17叶城18皮山19和田20于田
    21民丰22策勒23阿图什24巴音布鲁克25乌恰
    26吐尔尕特27塔什库尔干
    下载: 导出CSV

    表  2  1991—2020年塔里木盆地浮尘天气变化的统计特征参数

    Table  2.   Statistical characteristic parameters of floating dust change in the Tarim basin from 1991 to 2020

    季节拐点年份拟合方程相关系数r显著性检验
    y1y2y1y2y1y2
    2012y1=−0.31x+654.96y2=2.11x−4226.20.300.60*
    2013y1=−0.51x+1032.43y2=1.24x−2478.90.770.54**
    2011y1=−0.50x+1019.2y2=0.63x−1253.40.770.44**
    2011y1=0.03x−52.29y2=1.25x−2510.40.10.73*
     *通过0.05显著性水平t检验,**通过0.01显著性水平t检验。
    下载: 导出CSV
  • [1] 陈思宇, 黄建平, 李景鑫等. 2017. 塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究. 中国科学: 地球科学, 47(8): 939-957.

    Chen S Y, Huang J P, Li J X, et al. 2017. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci, 60(7): 1338-1355
    [2] 郭萍萍,杨建才,殷雪莲等. 2015. 甘肃省春季一次连续浮尘天气过程分析. 干旱气象,33(2):303-309

    Guo P P,Yang J C,Yin X L,et al. 2015. Analysis of a continuous floating dust weather in Gansu Province in Spring. J Arid Meteor,33(2):303-309 (in Chinese)
    [3] 何清. 1997. 浮尘天气及其评价. 新疆气象,20(3):23-25

    He Q. 1997. Floating dust and its evaluation. Bimon Xinjiang Meteor,20(3):23-25 (in Chinese)
    [4] 何清,赵景峰. 1997. 塔里木盆地浮尘时空分布及对环境影响的研究. 中国沙漠,17(2):119-126

    He Q,Zhao J F. 1997. The studies on the distribution of floating dusts in the Tarim Basin and its effects on environment. J Desert Res,17(2):119-126 (in Chinese)
    [5] 江远安,魏荣庆,王铁等. 2007. 塔里木盆地西部浮尘天气特征分析. 中国沙漠,27(2):301-306 doi: 10.3321/j.issn:1000-694X.2007.02.023

    Jiang Y A,Wei R Q,Wang T,et al. 2007. Analysis on dust-floating weather features in the western of Tarim Basin. J Desert Res,27(2):301-306 (in Chinese) doi: 10.3321/j.issn:1000-694X.2007.02.023
    [6] 李晋昌,董治宝,王训明等. 2008. 塔里木盆地沙尘天气的季节变化及成因分析. 中国沙漠,28(1):142-148

    Li J C,Dong Z B,Wang X M,et al. 2008. Seasonal distribution and causes of dust events in Tarim Basin,China. J Desert Res,28(1):142-148 (in Chinese)
    [7] 李晓岚,张宏升. 2010. 我国沙尘天气微气象学和湍流输送特征研究进展. 干旱气象,28(3):256-264 doi: 10.3969/j.issn.1006-7639.2010.03.003

    Li X L,Zhang H S. 2010. Review on characteristics of micrometeorology and turbulent transfer during dust events in China. Arid Meteor,28(3):256-264 (in Chinese) doi: 10.3969/j.issn.1006-7639.2010.03.003
    [8] 刘新春,钟玉婷,何清等. 2011. 塔克拉玛干沙漠腹地沙尘气溶胶质量浓度的观测研究. 中国环境科学,31(10):1609-1617

    Liu X C,Zhong Y T,He Q,et al. 2011. Observation study on mass concentration of dust aerosols in the Taklimakan Desert Hinterland. China Environ Sci,31(10):1609-1617 (in Chinese)
    [9] 马井会,张国琏,耿福海等. 2013. 上海地区一次典型连续浮尘天气过程分析. 中国环境科学,33(4):584-593 doi: 10.3969/j.issn.1000-6923.2013.04.002

    Ma J H,Zhang G L,Geng F H,et al. 2013. Analysis of a typical dust event in Shanghai. China Environ Sci,33(4):584-593 (in Chinese) doi: 10.3969/j.issn.1000-6923.2013.04.002
    [10] 马禹,肖开提,王旭. 2006. 塔里木盆地沙尘天气的气候特征. 北京大学学报(自然科学版),42(6):784-790 doi: 10.3321/j.issn:0479-8023.2006.06.016

    Ma Y,Xiao K T,Wang X. 2006. Climatological characteristics of dust weathers in the Tarim Basin. Acta Sci Nat Univ Pekinensis,42(6):784-790 (in Chinese) doi: 10.3321/j.issn:0479-8023.2006.06.016
    [11] 马禹,王旭,康凤琴. 2007. 塔里木盆地浮尘影响因子的强度变化. 北京大学学报(自然科学版),43(3):375-382 doi: 10.3321/j.issn:0479-8023.2007.03.016

    Ma Y,Wang X,Kang F Q. 2007. Intensity variation of influence factors on floating dust in the Tarim Basin. Acta Sci Nat Univ Pekinensis,43(3):375-382 (in Chinese) doi: 10.3321/j.issn:0479-8023.2007.03.016
    [12] 孟露,赵天良,杨兴华等. 2018. 塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估. 气象科学,38(2):157-166

    Meng L,Zhao T L,Yang X H,et al. 2018. An assessment of atmospheric boundary layer schemes over the Taklimakan Desert hinterland. J Meteor Sci,38(2):157-166 (in Chinese)
    [13] 仇会民,周成龙,杨帆等. 2018. 塔里木盆地东部地区一次典型区域性沙尘天气分析. 气象与环境学报,34(2):19-27 doi: 10.3969/j.issn.1673-503X.2018.02.003

    Qiu H M,Zhou C L,Yang F,et al. 2018. Analysis of a typical regional sand-dust event over the eastern Tarim Basin. J Meteor Environ,34(2):19-27 (in Chinese) doi: 10.3969/j.issn.1673-503X.2018.02.003
    [14] 王存忠. 2007. 霾、雾与浮尘. 中国科技术语,9(1):51-52 doi: 10.3969/j.issn.1673-8578.2007.01.017

    Wang C Z. 2007. About haze,fog and dust. China Terminol,9(1):51-52 (in Chinese) doi: 10.3969/j.issn.1673-8578.2007.01.017
    [15] 王丽娟,赵琳娜,寿绍文等. 2011. 2009年4月北方一次强沙尘暴过程的特征分析和数值模拟. 气象,37(3):309-317 doi: 10.7519/j.issn.1000-0526.2011.03.008

    Wang L J,Zhao L N,Shou S W,et al. 2011. Observation and numerical simulation analysis of the severe sand storm over northern China in April of 2009. Meteor Mon,37(3):309-317 (in Chinese) doi: 10.7519/j.issn.1000-0526.2011.03.008
    [16] 王旭,陈洪武,马禹. 2003. 塔里木盆地一次浮尘天气的卫星云图特征. 气象科技,31(2):80-83 doi: 10.3969/j.issn.1671-6345.2003.02.002

    Wang X,Chen H W,Ma Y. 2003. The characteristics of the satellite images of dust weather in Tarim Basin. Meteor Sci Technol,31(2):80-83 (in Chinese) doi: 10.3969/j.issn.1671-6345.2003.02.002
    [17] 王苑,邓军英,史兰红等. 2014. 基于气溶胶光学特性垂直分布的一次浮尘过程分析. 环境科学,35(3):830-838 Wang Y,Deng J Y,Shi L H,et al. 2014. A floating-dust case study based on the vertical distribution of aerosol optical properties. Environ Sci,35(3):830-838.
    [18] 文倩,戴君峰,崔卫国等. 2001. 关于现代浮尘研究与进展. 干旱区研究,18(4):68-71

    Wen Q,Dai J F,Cui W G,et al. 2001. Study and progresses on floating-dust. Arid Zone Res,18(4):68-71 (in Chinese)
    [19] 徐祥德,王寅钧,魏文寿等. 2014. 特殊大地形背景下塔里木盆地夏季降水过程及其大气水分循环结构. 沙漠与绿洲气象,8(2):1-11 doi: 10.3969/j.issn.1002-0799.2014.02.001

    Xu X D,Wang Y J,Wei W S,et al. 2014. Summertime precipitation process and atmospheric water cycle over Tarim Basin under the specific large terrain background. Desert Oasis Meteor,8(2):1-11 (in Chinese) doi: 10.3969/j.issn.1002-0799.2014.02.001
    [20] 杨兴华,何清,阿吉古丽·沙依提等. 2011. 塔克拉玛干沙漠腹地沙尘暴过程的大气边界层特征分析. 沙漠与绿洲气象,5(6):11-15 doi: 10.3969/j.issn.1002-0799.2011.06.004

    Yang X H,He Q,Ajiguli·Shayiti,et al. 2011. Character analysis of boundary layer during a Sandstorm in hinterland of the Taklimakan Desert. Desert Oasis Meteor,5(6):11-15 (in Chinese) doi: 10.3969/j.issn.1002-0799.2011.06.004
    [21] 叶笃正,罗四维,朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡. 气象学报,28(2):108-121 doi: 10.11676/qxxb1957.010

    Teh T C,Lo S W,Chu P C. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor Sinica,28(2):108-121 (in Chinese) doi: 10.11676/qxxb1957.010
    [22] 张莉,任国玉. 2003. 中国北方沙尘暴频数演化及其气候成因分析. 气象学报,61(6):744-750 doi: 10.3321/j.issn:0577-6619.2003.06.011

    Zhang L,Ren G Y. 2003. Change in dust storm frequency and the climatic controls in northern China. Acta Meteor Sinica,61(6):744-750 (in Chinese) doi: 10.3321/j.issn:0577-6619.2003.06.011
    [23] 张强,王胜. 2008. 西北干旱区夏季大气边界层结构及其陆面过程特征. 气象学报,66(4):599-608 doi: 10.3321/j.issn:0577-6619.2008.04.013

    Zhang Q,Wang S. 2008. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China. Acta Meteor Sinica,66(4):599-608 (in Chinese) doi: 10.3321/j.issn:0577-6619.2008.04.013
    [24] 张小曳. 2007. 有关中国黄土高原黄土物质的源区及其输送方式的再评述. 第四纪研究,27(2):181-186 doi: 10.3321/j.issn:1001-7410.2007.02.003

    Zhang X Y. 2007. Review on sources and transport of loess materials on the Chinese Loess plateau. Quat Sci,27(2):181-186 (in Chinese) doi: 10.3321/j.issn:1001-7410.2007.02.003
    [25] 张学文, 张家宝. 新疆气象手册. 北京: 气象出版社, 2006.

    Zhang X W, Zhang J B. Xinjiang Meteorological Manual. China Meteorological Press, 2006 (in Chinese)
    [26] Chen S J,Tong B W,Dong C Z,et al. 2020. Retrievals of aerosol layer height during dust events over the Taklimakan and Gobi Desert. J Quant Spectrosc Radiat Transf,254:107198 doi: 10.1016/j.jqsrt.2020.107198
    [27] Chen S Y,Huang J P,Zhao C,et al. 2013. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau:A case study in the summer of 2006. J Geophys Res,118(2):797-812 doi: 10.1002/jgrd.50122
    [28] Helmert J,Heinold B,Tegen I,et al. 2007. On the direct and semidirect effects of Saharan dust over Europe:A modeling study. J Geophys Res,112(D13):D13208
    [29] Huang J,Fu Q,Su J,et al. 2009. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos Chem Phys,9(12):4011-4021 doi: 10.5194/acp-9-4011-2009
    [30] Huang J P,Wang T H,Wang W C,et al. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res,119(19):11398-11416
    [31] Indoitu R,Orlovsky L,Orlovsky N. 2012. Dust storms in Central Asia:Spatial and temporal variations. J Arid Environ,85:62-70 doi: 10.1016/j.jaridenv.2012.03.018
    [32] Jaffe D,Anderson T,Covert D,et al. 1999. Transport of Asian air pollution to North America. Geophys Res Lett,26(6):711-714 doi: 10.1029/1999GL900100
    [33] Kang L T,Huang J P,Chen S Y,et al. 2016. Long-term trends of dust events over Tibetan Plateau during 1961-2010. Atmos Environ,125:188-198 doi: 10.1016/j.atmosenv.2015.10.085
    [34] Li J,Garshick E,Al-Hemoud A,et al. 2020. Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Sci Total Environ,712:136597 doi: 10.1016/j.scitotenv.2020.136597
    [35] Liu D,Zhao T L,Boiyo R,et al. 2019. Vertical structures of dust aerosols over East Asia based on CALIPSO retrievals. Remote Sens,11(6):701 doi: 10.3390/rs11060701
    [36] Lue Y L,Liu L Y,Hu X,et al. 2010. Characteristics and provenance of dustfall during an unusual floating dust event. Atmos Environ,44(29):3477-3484 doi: 10.1016/j.atmosenv.2010.06.027
    [37] Meng L,Yang X H,Zhao T L,et al. 2019. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin,Northwest China. Atmos Res,218:285-295 doi: 10.1016/j.atmosres.2018.12.006
    [38] Meng L,Yang X H,Zhao T L,et al. 2020. Simulated regional transport structures and budgets of dust aerosols during a typical springtime dust storm in the Tarim Basin,Northwest China. Atmos Res,238:104892 doi: 10.1016/j.atmosres.2020.104892
    [39] Nan Y,Wang Y X. 2018. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP. Sci Total Environ,633:608-617 doi: 10.1016/j.scitotenv.2018.03.125
    [40] Stanelle T,Vogel B,Vogel H,et al. 2010. Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys,10(22):10771-10788 doi: 10.5194/acp-10-10771-2010
    [41] Wang X,Huang J P,Ji M X,et al. 2008. Variability of East Asia dust events and their long-term trend. Atmos Environ,42(13):3156-3165 doi: 10.1016/j.atmosenv.2007.07.046
    [42] Yang F,He Q,Huang J P,et al. 2021. Desert environment and climate observation network over the Taklimakan Desert. Bull Amer Meteor Soc,102(6):E1172-E1191
    [43] Yang X H,Shen S H,Yang F,et al. 2016. Spatial and temporal variations of blowing dust events in the Taklimakan Desert. Theor Appl Climatol,125(3-4):669-677 doi: 10.1007/s00704-015-1537-4
    [44] Yumimoto K,Eguchi K,Uno I,et al. 2009. An elevated large-scale dust veil from the Taklimakan desert:Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmos Chem Phys,9(21):8545-8558 doi: 10.5194/acp-9-8545-2009
    [45] Zhang H,Ma J H,Zheng Y F. 2010. Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor Sinica,24(5):558-570
    [46] Zhang H S,Li X L. 2014. Review of the field measurements and parameterization for dust emission during sand-dust events. J Meteor Res,28(5):903-922 doi: 10.1007/s13351-014-3296-z
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  104
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 录用日期:  2022-02-28
  • 修回日期:  2022-01-23
  • 网络出版日期:  2022-02-22

目录

    /

    返回文章
    返回