Climatic characteristics of floating dust and persistent floating dust over the Tarim basin in the recent 30 years
-
摘要: 塔里木盆地沙尘天气具有独特的持续浮尘滞空区域特征。目前塔里木盆地浮尘天气的气候学特征认知依然停留在1990年,亟待认知近30年塔里木盆地浮尘天气的变化特征。因此,利用1991—2020年塔里木盆地27个观测站浮尘天气观测资料,分析塔里木盆地近30年浮尘天气的时、空变化特征,并给出盆地持续浮尘天气的频次分布,以加深对塔里木盆地浮尘“滞空”变化特征的认识。近30年(1991—2020年)塔里木盆地浮尘日数年际变化趋势呈“V”型特征,即1991—2011年浮尘天气呈现整体下降趋势,但2012年以来反转为上升趋势。塔里木盆地南部皮山—和田—策勒—民丰一线地区维持一个浮尘天气频发区的极值中心,且进入21世纪以来,盆地南部这一浮尘天气频发区的极值中心东移至民丰地区,中心值为152 d。塔里木盆地浮尘天气具有独特的区域特征,近30年盆地持续2 d及其以上的浮尘天气占浮尘日总数的64.25%。塔里木盆地南部和田与策勒等地,甚至出现持续30 d以上的月时间尺度持续性极端浮尘事件。给出了一个值得关注的塔里木盆地浮尘“滞空”的沙尘气候特征。Abstract: There are unique regional characteristics of persistent floating dust in the Tarim basin. At present, our understanding of the climatological characteristics of floating dust over the Tarim basin still remains for the scenario before 1990, and it is imperative to understand the variation characteristics of floating dust in the recent 30 years. Based on the dust weather observation data collected at 27 weather stations in the Tarim basin during the period 1991—2020, temporal and spatial variation characteristics are analyzed and the frequency distribution of persistent floating dust is obtained to fully understand the variation characteristics of floating dust in the Tarim basin. In the recent 30 years (1991—2020), the interannual variation trend of floating dust days displays a "V" shape in the basin, that is, the whole basin experienced a downward trend from 1991 to 2011, and the trend has turned to upward since 2012. The Pishan-Hotan-Cele-Minfeng area to the south of the Tarim basin is an maximum value center of frequent floating dust. Since the beginning of this century, the maximum center of floating dust in the south of the basin has moved eastward to Minfeng area, where the maximum value is 152 d. Floating dust exhibits unique regional features in the Tarim basin. In the recent 30 years, floating dust persistent for 2 days or longer accounts for 64.25% of the total floating dust days in the Tarim basin. Even monthly scale extreme floating dust events that could last for more than 30 days were observed in Hotan, Cele and other places in the south of the basin. A climatic dust characteristic of persistent floating dust in the Tarim basin is presented.
-
Key words:
- Tarim basin /
- Dust weather /
- Persistent floating dust /
- Climatic characteristics
-
图 2 近30年塔里木盆地及周边年平均浮尘天气日数 (单位:d) 空间分布 (彩色散点代表浮尘天气日数;色阶表示海拔高度;“皮山-和田-策勒-民丰”一线用紫色箭头标出)
Figure 2. Spatial distribution of floating dust days over the Tarim basin and its surrounding areas averaged in the recent 30 years (Color scatter points represent floating dust days,and color shadings show terrain elevation;the line "Pishan-Hotan-Cele-Minfeng" is marked by the purple arrow)
图 3 1991—2020年塔里木盆地平均浮尘天气日数的年际变化趋势 (灰色柱) 及1991—2010年拟合曲线y1 (绿色直线),2011—2020年拟合曲线y2 (橙色直线),Savitzky-Golay平滑曲线 (红色虚线)
Figure 3. Interannual variation trend of floating dust days (d) in the Tarim basin averaged from 1991 to 2020 (gray colum bars),fitting curve y1 from 1991 to 2010 (green line),fitting curve y2 from 2011 to 2020 (orange line), and Savitzky-Golay smooth curve (red dotted line)
图 5 1991—2020年塔里木盆地平均浮尘天气日数及标准偏差的月际变化 (红色圆点代表平均浮尘天气日数,黑色竖线到圆点的距离代表标准差)
Figure 5. Monthly variation of floating dust days and standard deviation in the Tarim Basin averaged from 1991 to 2020 (The red dots represent the average number of floating dust days,and the distance from the black vertical lines to the red dots represent the standard deviation)
图 7 塔里木盆地不同站点浮尘天气日数的年代际变化趋势 (a. 逐年代递增型, b. 逐年代递减型,c. 21世纪初期最多型, d. 21世纪初期最少型)
Figure 7. Interdecadal variation trend of floating dust days at different stations in the Tarim basin (a. the increasing type year by year,b. the decreasing type year by year,c. the most frequent type in the early 21st century,d. the least frequency type in the early 21st century)
图 9 1991—2020年塔里木盆地持续2 d及以上 (a) 和持续10 d及以上 (b) 持续性浮尘天气的频次分布 (次数:灰色柱,百分比:红色点线)
Figure 9. Frequency distribution of persistent floating dust lasting for 2 d or more (a),and lasting for 10 d or more (b) in the Tarim basin from 1991 to 2020 (occurrence times:gray column bars, percentage:red dotted line)
图 10 1991—2020年塔里木盆地持续2—5 d (a)、持续6—10 d (b)、持续11—30 d (c)、持续31 d及以上 (d) 浮尘天气频次的空间分布 (彩色散点代表不同持续浮尘天气出现次数,色阶表示海拔高度)
Figure 10. Spatial distribution of persistent floating dust frequency (a) lasting for 2—5 d, (b) lasting for 6—10 d,(c) lasting for 11—30 d,and (d) lasting for 31 d or more in the Tarim basin from 1991 to 2020 (color scatter points represent the occurrence times of different persistent floating dust,and color shadings represent terrain elevation)
表 1 塔里木盆地及周边27个观测站站点信息
Table 1. Information of 27 observation stations over the Tarim basin and its surrounding areas
序号 站点 序号 站点 序号 站点 序号 站点 序号 站点 1 轮台 2 库尔勒 3 尉犁 4 铁干里克 5 若羌 6 且末 7 塔中 8 库车 9 阿克苏 10 阿拉尔 11 柯坪 12 巴楚 13 麦盖提 14 岳普湖 15 喀什 16 莎车 17 叶城 18 皮山 19 和田 20 于田 21 民丰 22 策勒 23 阿图什 24 巴音布鲁克 25 乌恰 26 吐尔尕特 27 塔什库尔干 表 2 1991—2020年塔里木盆地浮尘天气变化的统计特征参数
Table 2. Statistical characteristic parameters of floating dust change in the Tarim basin from 1991 to 2020
季节 拐点年份 拟合方程 相关系数r 显著性检验 y1 y2 y1 y2 y1 y2 春 2012 y1=−0.31x+654.96 y2=2.11x−4226.2 0.30 0.60 * 夏 2013 y1=−0.51x+1032.43 y2=1.24x−2478.9 0.77 0.54 ** 秋 2011 y1=−0.50x+1019.2 y2=0.63x−1253.4 0.77 0.44 ** 冬 2011 y1=0.03x−52.29 y2=1.25x−2510.4 0.1 0.73 * *通过0.05显著性水平t检验,**通过0.01显著性水平t检验。 -
[1] 陈思宇, 黄建平, 李景鑫等. 2017. 塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究. 中国科学: 地球科学, 47(8): 939-957.Chen S Y, Huang J P, Li J X, et al. 2017. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci, 60(7): 1338-1355 [2] 郭萍萍,杨建才,殷雪莲等. 2015. 甘肃省春季一次连续浮尘天气过程分析. 干旱气象,33(2):303-309Guo P P,Yang J C,Yin X L,et al. 2015. Analysis of a continuous floating dust weather in Gansu Province in Spring. J Arid Meteor,33(2):303-309 (in Chinese) [3] 何清. 1997. 浮尘天气及其评价. 新疆气象,20(3):23-25He Q. 1997. Floating dust and its evaluation. Bimon Xinjiang Meteor,20(3):23-25 (in Chinese) [4] 何清,赵景峰. 1997. 塔里木盆地浮尘时空分布及对环境影响的研究. 中国沙漠,17(2):119-126He Q,Zhao J F. 1997. The studies on the distribution of floating dusts in the Tarim Basin and its effects on environment. J Desert Res,17(2):119-126 (in Chinese) [5] 江远安,魏荣庆,王铁等. 2007. 塔里木盆地西部浮尘天气特征分析. 中国沙漠,27(2):301-306 doi: 10.3321/j.issn:1000-694X.2007.02.023Jiang Y A,Wei R Q,Wang T,et al. 2007. Analysis on dust-floating weather features in the western of Tarim Basin. J Desert Res,27(2):301-306 (in Chinese) doi: 10.3321/j.issn:1000-694X.2007.02.023 [6] 李晋昌,董治宝,王训明等. 2008. 塔里木盆地沙尘天气的季节变化及成因分析. 中国沙漠,28(1):142-148Li J C,Dong Z B,Wang X M,et al. 2008. Seasonal distribution and causes of dust events in Tarim Basin,China. J Desert Res,28(1):142-148 (in Chinese) [7] 李晓岚,张宏升. 2010. 我国沙尘天气微气象学和湍流输送特征研究进展. 干旱气象,28(3):256-264 doi: 10.3969/j.issn.1006-7639.2010.03.003Li X L,Zhang H S. 2010. Review on characteristics of micrometeorology and turbulent transfer during dust events in China. Arid Meteor,28(3):256-264 (in Chinese) doi: 10.3969/j.issn.1006-7639.2010.03.003 [8] 刘新春,钟玉婷,何清等. 2011. 塔克拉玛干沙漠腹地沙尘气溶胶质量浓度的观测研究. 中国环境科学,31(10):1609-1617Liu X C,Zhong Y T,He Q,et al. 2011. Observation study on mass concentration of dust aerosols in the Taklimakan Desert Hinterland. China Environ Sci,31(10):1609-1617 (in Chinese) [9] 马井会,张国琏,耿福海等. 2013. 上海地区一次典型连续浮尘天气过程分析. 中国环境科学,33(4):584-593 doi: 10.3969/j.issn.1000-6923.2013.04.002Ma J H,Zhang G L,Geng F H,et al. 2013. Analysis of a typical dust event in Shanghai. China Environ Sci,33(4):584-593 (in Chinese) doi: 10.3969/j.issn.1000-6923.2013.04.002 [10] 马禹,肖开提,王旭. 2006. 塔里木盆地沙尘天气的气候特征. 北京大学学报(自然科学版),42(6):784-790 doi: 10.3321/j.issn:0479-8023.2006.06.016Ma Y,Xiao K T,Wang X. 2006. Climatological characteristics of dust weathers in the Tarim Basin. Acta Sci Nat Univ Pekinensis,42(6):784-790 (in Chinese) doi: 10.3321/j.issn:0479-8023.2006.06.016 [11] 马禹,王旭,康凤琴. 2007. 塔里木盆地浮尘影响因子的强度变化. 北京大学学报(自然科学版),43(3):375-382 doi: 10.3321/j.issn:0479-8023.2007.03.016Ma Y,Wang X,Kang F Q. 2007. Intensity variation of influence factors on floating dust in the Tarim Basin. Acta Sci Nat Univ Pekinensis,43(3):375-382 (in Chinese) doi: 10.3321/j.issn:0479-8023.2007.03.016 [12] 孟露,赵天良,杨兴华等. 2018. 塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估. 气象科学,38(2):157-166Meng L,Zhao T L,Yang X H,et al. 2018. An assessment of atmospheric boundary layer schemes over the Taklimakan Desert hinterland. J Meteor Sci,38(2):157-166 (in Chinese) [13] 仇会民,周成龙,杨帆等. 2018. 塔里木盆地东部地区一次典型区域性沙尘天气分析. 气象与环境学报,34(2):19-27 doi: 10.3969/j.issn.1673-503X.2018.02.003Qiu H M,Zhou C L,Yang F,et al. 2018. Analysis of a typical regional sand-dust event over the eastern Tarim Basin. J Meteor Environ,34(2):19-27 (in Chinese) doi: 10.3969/j.issn.1673-503X.2018.02.003 [14] 王存忠. 2007. 霾、雾与浮尘. 中国科技术语,9(1):51-52 doi: 10.3969/j.issn.1673-8578.2007.01.017Wang C Z. 2007. About haze,fog and dust. China Terminol,9(1):51-52 (in Chinese) doi: 10.3969/j.issn.1673-8578.2007.01.017 [15] 王丽娟,赵琳娜,寿绍文等. 2011. 2009年4月北方一次强沙尘暴过程的特征分析和数值模拟. 气象,37(3):309-317 doi: 10.7519/j.issn.1000-0526.2011.03.008Wang L J,Zhao L N,Shou S W,et al. 2011. Observation and numerical simulation analysis of the severe sand storm over northern China in April of 2009. Meteor Mon,37(3):309-317 (in Chinese) doi: 10.7519/j.issn.1000-0526.2011.03.008 [16] 王旭,陈洪武,马禹. 2003. 塔里木盆地一次浮尘天气的卫星云图特征. 气象科技,31(2):80-83 doi: 10.3969/j.issn.1671-6345.2003.02.002Wang X,Chen H W,Ma Y. 2003. The characteristics of the satellite images of dust weather in Tarim Basin. Meteor Sci Technol,31(2):80-83 (in Chinese) doi: 10.3969/j.issn.1671-6345.2003.02.002 [17] 王苑,邓军英,史兰红等. 2014. 基于气溶胶光学特性垂直分布的一次浮尘过程分析. 环境科学,35(3):830-838 Wang Y,Deng J Y,Shi L H,et al. 2014. A floating-dust case study based on the vertical distribution of aerosol optical properties. Environ Sci,35(3):830-838. [18] 文倩,戴君峰,崔卫国等. 2001. 关于现代浮尘研究与进展. 干旱区研究,18(4):68-71Wen Q,Dai J F,Cui W G,et al. 2001. Study and progresses on floating-dust. Arid Zone Res,18(4):68-71 (in Chinese) [19] 徐祥德,王寅钧,魏文寿等. 2014. 特殊大地形背景下塔里木盆地夏季降水过程及其大气水分循环结构. 沙漠与绿洲气象,8(2):1-11 doi: 10.3969/j.issn.1002-0799.2014.02.001Xu X D,Wang Y J,Wei W S,et al. 2014. Summertime precipitation process and atmospheric water cycle over Tarim Basin under the specific large terrain background. Desert Oasis Meteor,8(2):1-11 (in Chinese) doi: 10.3969/j.issn.1002-0799.2014.02.001 [20] 杨兴华,何清,阿吉古丽·沙依提等. 2011. 塔克拉玛干沙漠腹地沙尘暴过程的大气边界层特征分析. 沙漠与绿洲气象,5(6):11-15 doi: 10.3969/j.issn.1002-0799.2011.06.004Yang X H,He Q,Ajiguli·Shayiti,et al. 2011. Character analysis of boundary layer during a Sandstorm in hinterland of the Taklimakan Desert. Desert Oasis Meteor,5(6):11-15 (in Chinese) doi: 10.3969/j.issn.1002-0799.2011.06.004 [21] 叶笃正,罗四维,朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡. 气象学报,28(2):108-121 doi: 10.11676/qxxb1957.010Teh T C,Lo S W,Chu P C. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor Sinica,28(2):108-121 (in Chinese) doi: 10.11676/qxxb1957.010 [22] 张莉,任国玉. 2003. 中国北方沙尘暴频数演化及其气候成因分析. 气象学报,61(6):744-750 doi: 10.3321/j.issn:0577-6619.2003.06.011Zhang L,Ren G Y. 2003. Change in dust storm frequency and the climatic controls in northern China. Acta Meteor Sinica,61(6):744-750 (in Chinese) doi: 10.3321/j.issn:0577-6619.2003.06.011 [23] 张强,王胜. 2008. 西北干旱区夏季大气边界层结构及其陆面过程特征. 气象学报,66(4):599-608 doi: 10.3321/j.issn:0577-6619.2008.04.013Zhang Q,Wang S. 2008. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China. Acta Meteor Sinica,66(4):599-608 (in Chinese) doi: 10.3321/j.issn:0577-6619.2008.04.013 [24] 张小曳. 2007. 有关中国黄土高原黄土物质的源区及其输送方式的再评述. 第四纪研究,27(2):181-186 doi: 10.3321/j.issn:1001-7410.2007.02.003Zhang X Y. 2007. Review on sources and transport of loess materials on the Chinese Loess plateau. Quat Sci,27(2):181-186 (in Chinese) doi: 10.3321/j.issn:1001-7410.2007.02.003 [25] 张学文, 张家宝. 新疆气象手册. 北京: 气象出版社, 2006.Zhang X W, Zhang J B. Xinjiang Meteorological Manual. China Meteorological Press, 2006 (in Chinese) [26] Chen S J,Tong B W,Dong C Z,et al. 2020. Retrievals of aerosol layer height during dust events over the Taklimakan and Gobi Desert. J Quant Spectrosc Radiat Transf,254:107198 doi: 10.1016/j.jqsrt.2020.107198 [27] Chen S Y,Huang J P,Zhao C,et al. 2013. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau:A case study in the summer of 2006. J Geophys Res,118(2):797-812 doi: 10.1002/jgrd.50122 [28] Helmert J,Heinold B,Tegen I,et al. 2007. On the direct and semidirect effects of Saharan dust over Europe:A modeling study. J Geophys Res,112(D13):D13208 [29] Huang J,Fu Q,Su J,et al. 2009. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos Chem Phys,9(12):4011-4021 doi: 10.5194/acp-9-4011-2009 [30] Huang J P,Wang T H,Wang W C,et al. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res,119(19):11398-11416 [31] Indoitu R,Orlovsky L,Orlovsky N. 2012. Dust storms in Central Asia:Spatial and temporal variations. J Arid Environ,85:62-70 doi: 10.1016/j.jaridenv.2012.03.018 [32] Jaffe D,Anderson T,Covert D,et al. 1999. Transport of Asian air pollution to North America. Geophys Res Lett,26(6):711-714 doi: 10.1029/1999GL900100 [33] Kang L T,Huang J P,Chen S Y,et al. 2016. Long-term trends of dust events over Tibetan Plateau during 1961-2010. Atmos Environ,125:188-198 doi: 10.1016/j.atmosenv.2015.10.085 [34] Li J,Garshick E,Al-Hemoud A,et al. 2020. Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Sci Total Environ,712:136597 doi: 10.1016/j.scitotenv.2020.136597 [35] Liu D,Zhao T L,Boiyo R,et al. 2019. Vertical structures of dust aerosols over East Asia based on CALIPSO retrievals. Remote Sens,11(6):701 doi: 10.3390/rs11060701 [36] Lue Y L,Liu L Y,Hu X,et al. 2010. Characteristics and provenance of dustfall during an unusual floating dust event. Atmos Environ,44(29):3477-3484 doi: 10.1016/j.atmosenv.2010.06.027 [37] Meng L,Yang X H,Zhao T L,et al. 2019. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin,Northwest China. Atmos Res,218:285-295 doi: 10.1016/j.atmosres.2018.12.006 [38] Meng L,Yang X H,Zhao T L,et al. 2020. Simulated regional transport structures and budgets of dust aerosols during a typical springtime dust storm in the Tarim Basin,Northwest China. Atmos Res,238:104892 doi: 10.1016/j.atmosres.2020.104892 [39] Nan Y,Wang Y X. 2018. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP. Sci Total Environ,633:608-617 doi: 10.1016/j.scitotenv.2018.03.125 [40] Stanelle T,Vogel B,Vogel H,et al. 2010. Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys,10(22):10771-10788 doi: 10.5194/acp-10-10771-2010 [41] Wang X,Huang J P,Ji M X,et al. 2008. Variability of East Asia dust events and their long-term trend. Atmos Environ,42(13):3156-3165 doi: 10.1016/j.atmosenv.2007.07.046 [42] Yang F,He Q,Huang J P,et al. 2021. Desert environment and climate observation network over the Taklimakan Desert. Bull Amer Meteor Soc,102(6):E1172-E1191 [43] Yang X H,Shen S H,Yang F,et al. 2016. Spatial and temporal variations of blowing dust events in the Taklimakan Desert. Theor Appl Climatol,125(3-4):669-677 doi: 10.1007/s00704-015-1537-4 [44] Yumimoto K,Eguchi K,Uno I,et al. 2009. An elevated large-scale dust veil from the Taklimakan desert:Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmos Chem Phys,9(21):8545-8558 doi: 10.5194/acp-9-8545-2009 [45] Zhang H,Ma J H,Zheng Y F. 2010. Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor Sinica,24(5):558-570 [46] Zhang H S,Li X L. 2014. Review of the field measurements and parameterization for dust emission during sand-dust events. J Meteor Res,28(5):903-922 doi: 10.1007/s13351-014-3296-z -