Statistical analysis of the structural characteristics of typical downbursts in Jiangsu province,China
-
摘要: 为了研究江苏地区下击暴流的结构特征,利用常规天气资料、雷达探测资料、自动气象站观测资料和ERA5再分析资料等,选取2007—2018年江苏地区19个典型下击暴流过程进行统计分析。结果表明:江苏下击暴流的分布呈北多南少,以湿下击暴流为主,7月是下击暴流的高发月份,孤立风暴型下击暴流具有弱的天气尺度强迫和上干下湿的结构,风暴移速较慢,飑线镶嵌型下击暴流具有很强的天气尺度强迫特征,风暴移速较快。下击暴流影响期间地面温度变化剧烈,温度降低伴随有明显风速增大过程。统计显示,产生下击暴流风暴的环境温度平均垂直递减率为6.8℃/km,能够保证负浮力的维持,干冷空气被中层辐合气流夹卷进入风暴内进一步加强了下沉气流,使得下击暴流得以维持和加强。下击暴流的初生阶段,强反射率因子核心和中层径向辐合出现在下击暴流发生前20—30 min,成熟阶段,强反射率因子核心高度有明显降低,低层呈辐散结构。Abstract: 19 typical downburst events in Jiangsu province from 2007 to 2018 are statistically analyzed using conventional observations, radar data, automatic meteorological station (AMS) data and ERA5 reanalysis product to reveal their structural characteristics. The results show high frequency of downburst in the north of Jiangsu and low frequency in the south, while wet downbursts account for most of the cases. July is the month with high downburst occurrences. The downburst caused by an isolated storm is featured by weak synoptic-scale forcing, wet low levels and dry mid- to high levels and slow storm movement. However, the downburst embedded in a squall line is featured by strong synoptic-scale forcing and fast storm movement. The ground temperature changes drastically during the downburst, and the temperature drop is accompanied by significant increase in wind speed. By statistics, the average vertical lapse rate of temperature is 6.8℃/km, which can ensure the maintenance of negative buoyancy. The dry and cold air is entrained into the storm by the mid-level convergent airflow and further strengthens the downdraft, which helps maintain and strengthen the downburst. In the initial stage, strong reflectivity and mid-level radial convergence appear 20—30 min prior to the downburst. In the mature stage, the height of the strong reflectivity core significantly descends, and the lower layer presents a divergence structure.
-
Key words:
- Downburst /
- Pseudo equivalent temperature /
- Wind shear /
- Mid-altitude radial convergence /
- Downdraft
-
表 1 不同风暴类型下击暴流的热动力特征统计
Table 1. Statistics of thermal and dynamic characteristics of downburst under different storm types
V
(km/h)CAPE
(J/kg)ϴse850-500
(℃)LCL
(hPa)Wsr0-2
(m/s)Wsr0-6
(m/s)孤立风暴型(DIS) 16 2395 20.98 878 4.5 8.29 飑线镶嵌型
(DSL)47.5 1410 18.8 893 6.28 15.96 表 2 江苏典型下击暴流过程的垂直温度变化
Table 2. Vertical temperature changes accompanied with typical downbursts in Jiangsu
时间 环境空气最大
露点差高度
(km)0℃层
高度
(km)下击暴流发生
前地面温度
(℃)0℃层以下温度
平均递减率
(℃/km)20060627 3.1 4.2 30.1 7.2 20070725 8.4 5.1 31.9 6.3 20070802 5.7 4.9 35.1 7.2 20080707 9.5 5.1 34.9 6.8 20100804 10.8 5.4 35.2 6.5 20110727 7.4 5.2 33.3 6.4 20150806 6.5 4.6 34.7 7.5 20160729a 6.6 5.2 37.8 7.3 20160729b 6.6 5.1 38.1 7.5 20160730 7.5 5.1 35.3 6.9 20170705 7.4 4.7 32.6 6.9 20170714 9.5 4.8 34.3 7.1 20170807 8.4 5.3 36.8 6.9 20170819 8.5 4.8 32.6 6.8 20170828 7.5 5.3 36.1 6.8 20180304 5.6 4.1 20.3 5.0 20180516 4.8 4.6 34.3 7.5 20180628a 4.9 4.5 28.1 6.2 20180628b 4.9 4.6 28.7 6.2 注:时间列中的a和b表示同一日期内两个不同下击暴流个例,下同。 表 3 江苏典型下击暴流发生前强反射率因子统计
Table 3. Statistics of strong reflectivity before the occurrence of typical downbursts in Jiangsu
时间 强反射率因子
核心强度
(dBz)强反射率因子
核心高度
(km)仰角
(°)与雷达中
心距离
(km)20060627 60 3.1 2.4 61 20070725 60 3.4 4.3 44 20070802 60 4.5 4.3 56 20080707 65 2.2 3.4 35 20100804 / / / 2.7 20110727 55 1.3 3.4 20 20150806 63 2.7 6.0 24 20160729a 63 0.9 6.0 8.5 20160729b 58 0.8 6.0 7.4 20160730 63 2.0 6.0 12.4 20170705 63 3.6 6.0 33 20170714 63 4.3 4.3 54.1 20170807 53 1.2 6.0 11.9 20170819 65 3.4 6.0 30.9 20170828 63 5.2 6.0 47.6 20180304 74 4.0 6.0 35.6 20180516 63 2.8 6.0 26.2 20180628a 69 7.0 6.0 63.1 20180628b 63 6.0 4.3 74.4 表 4 江苏典型下击暴流发生前径向速度统计
Table 4. Radial velocity statistics before the occurrence of typical downbursts in Jiangsu
径向速度
差(m/s)径向速度大值
区高度(km)仰角
(°)与雷达中心
距离(km)20060627 48 4.0 3.4 62 20070725 34 3.8 4.3 47.9 20070802 41 5.5 6.0 50.5 20080707 24 3.7 6.0 36.3 20100804 / / / 2.7 20110727 20 3.1 6.0 27.7 20150806 15 2.7 6.0 24.4 20160729a 12 0.9 6.0 8.1 20160729b 19 0.4 6.0 2.8 20160730 24 2.3 6.0 15.7 20170705 15 4.0 6.0 36.6 20170714 20 4.6 4.3 58.6 20170807 19 1.1 6.0 10.1 20170819 31 4.1 6.0 37.7 20170828 15 4.9 6.0 45.6 20180304 34 3.6 6.0 32.3 20180516 31 2.1 6.0 28.2 20180628a 39 5.7 4.3 61.8 20180628b 20 7.7 6.0 71.5 表 5 江苏典型下击暴流成熟阶段强反射率因子统计
Table 5. Statistics of strong reflectivity in the mature stage of typical downbursts in Jiangsu
时间 强反射率因子
核心强度
(dBz)强反射率因子
核心高度
(km)仰角
(°)与雷达
中心距离
(km)20060627 58 0.6 0.5 49.5 20070725 58 0.4 0.5 30.6 20070802 58 0.5 0.5 44.5 20080707 63 0.2 0.5 17.5 20100804 / / / / 20110727 63 0.2 0.5 20.6 20150806 63 0.4 0.5 23.5 20160729a 58 0.6 1.5 6.6 20160729b 58 0.3 1.5 8.4 20160730 58 0.7 0.5 12.9 20170705 63 0.4 0.5 30.3 20170714 58 0.6 0.5 46.8 20170807 53 0.3 1.5 10.3 20170819 63 0.7 0.5 54.3 20170828 58 0.7 0.5 54.5 20180304 65 0.5 0.5 34.1 20180516 58 0.2 0.5 21.1 20180628a 63 0.6 0.5 42.9 20180628b 58 0.8 0.5 58.5 -
[1] 毕旭,罗慧,刘勇. 2007. 陕西中部一次下击暴流的多普勒雷达回波特征. 气象,33(1):70-73 doi: 10.3969/j.issn.1000-0526.2007.01.011Bi X,Luo H,Liu Y. 2007. Doppler radar echo features of a downburst in central part of Shaanxi province. Meteor Mon,33(1):70-73 (in Chinese) doi: 10.3969/j.issn.1000-0526.2007.01.011 [2] 刁秀广,赵振东,高慧君等. 2011. 三次下击暴流雷达回波特征分析. 气象,37(5):522-531 doi: 10.7519/j.issn.1000-0526.2011.05.002Diao X G,Zhao Z D,Gao H J,et al. 2011. Doppler radar echo features of three downbursts. Meteor Mon,37(5):522-531 (in Chinese) doi: 10.7519/j.issn.1000-0526.2011.05.002 [3] 方翀,王西贵,盛杰等. 2017. 华北地区雷暴大风的时空分布及物理量统计特征分析. 高原气象,36(5):1368-1385Fang C,Wang X G,Sheng J,et al. 2017. Temporal and spatial distribution of North China thunder-gust winds and the statistical analysis of physical characteristics. Plateau Meteor,36(5):1368-1385 (in Chinese) [4] 费海燕,王秀明,周小刚等. 2016. 中国强雷暴大风的气候特征和环境参数分析. 气象,42(12):1513-1521 doi: 10.7519/j.issn.1000-0526.2016.12.009Fei H Y,Wang X M,Zhou X G,et al. 2016. Climatic characteristics and environmental parameters of severe thunderstorm gales in China. Meteor Mon,42(12):1513-1521 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.12.009 [5] 符式红,王秀明,俞小鼎. 2018. 相似环流背景下海南两次不同类型强对流天气对比研究. 气象学报,76(5):742-754Fu S H,Wang X M,Yu X D. 2018. A comparative study on two consecutive severe convective weather events in Hainan under similar background. Acta Meteor Sinica,76(5):742-754 (in Chinese) [6] 李彩玲,蔡康龙,黄先香等. 2021. 桂林一次强下击暴流成因分析. 气象,47(2):242-252 doi: 10.7519/j.issn.1000-0526.2021.02.010Li C L,Cai K L,Huang X X,et al. 2021. Cause analysis of a severe downburst in Guilin. Meteor Mon,47(2):242-252 (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.02.010 [7] 李宏海,欧进萍. 2015. 我国下击暴流的时空分布特性. 自然灾害学报,24(6):9-18Li H H,Ou J P. 2015. Spatiotemporal distribution characteristics of downburst in China. J Nat Disasters,24(6):9-18 (in Chinese) [8] 廖晓农,俞小鼎,王迎春. 2008. 北京地区一次罕见的雷暴大风过程特征分析. 高原气象,27(6):1350-1362Liao X N,Yu X D,Wang Y C. 2008. Analysis on an exceptionally strong wind gust event in Beijing. Plateau Meteor,27(6):1350-1362 (in Chinese) [9] 罗辉,张杰,朱克云等. 2015. 下击暴流的雷达预警量化指标研究. 气象学报,73(5):853-867 doi: 10.11676/qxxb2015.058Luo H,Zhang J,Zhu K Y,et al. 2015. Study of the radar quantitative index of forewarning downburst. Acta Meteor Sinica,73(5):853-867 (in Chinese) doi: 10.11676/qxxb2015.058 [10] 孟智勇,姚聃,白兰强等. 2016. 基于实地灾害调研和雷达观测对“东方之星”倾覆地点附近强风的估计. 科学通报,61(7):797-798. Meng Z Y,Yao D,Bai L Q,et al. 2016. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations. Sci Bull,61(4):330-337. [11] 孙京,肖艳姣,冷亮. 2019. 基于多普勒天气雷达体扫资料的下击暴流预警方法研究. 自然灾害学报,28(2):118-126Sun J,Xiao Y J,Leng L. 2019. Damaging downbursts warning algorithm using the Doppler weather radar scanning data. J Nat Disasters,28(2):118-126 (in Chinese) [12] 孙凌峰,郭学良,孙立潭等. 2003. 武汉“6·22”空难下击暴流的三维数值模拟研究. 大气科学,27(6):1077-1092 doi: 10.3878/j.issn.1006-9895.2003.06.11Sun L F,Guo X L,Sun L T,et al. 2003. A numerical study of the airplane disaster-producing microburst on 22 June 2000 in Wuhan. Chinese J Atmos Sci,27(6):1077-1092 (in Chinese) doi: 10.3878/j.issn.1006-9895.2003.06.11 [13] 陶岚,戴建华. 2011. 下击暴流自动识别算法研究. 高原气象,30(3):784-797Tao L,Dai J H. 2011. Research on automatic detection algorithm of downburst. Plateau Meteor,30(3):784-797 (in Chinese) [14] 王楠,刘黎平,仲凌志. 2009. 一次下击暴流天气的多普勒雷达资料分析. 南京信息工程大学学报(自然科学版),1(3):273-278Wang N,Liu L P,Zhong L Z. 2009. Analysis of a downburst using Doppler radar data. J Nanjing Univ Informat Sci Technol (Nat Sci Ed),1(3):273-278 (in Chinese) [15] 王兴,闵锦忠,张露萱等. 2019. 雷达数据外推与特征识别的下击暴流预警方法. 气象科学,39(3):377-385 doi: 10.3969/2018jms.0058Wang X,Min J Z,Zhang L X,et al. 2019. Method of downburst warning based on radar data extrapolation and feature recognition. Scientia Meteor Sinica,39(3):377-385 (in Chinese) doi: 10.3969/2018jms.0058 [16] 王秀明,俞小鼎,周小刚等. 2012. “6.3”区域致灾雷暴大风形成及维持原因分析. 高原气象,31(2):504-514Wang X M,Yu X D,Zhou X G,et al. 2012. Study on the formation and evolution of "6.3" damage wind. Plateau Meteor,31(2):504-514 (in Chinese) [17] 王秀明,周小刚,俞小鼎. 2013. 雷暴大风环境特征及其对风暴结构影响的对比研究. 气象学报,71(5):839-852 doi: 10.11676/qxxb2013.073Wang X M,Zhou X G,Yu X D. 2013. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures. Acta Meteor Sinica,71(5):839-852 (in Chinese) doi: 10.11676/qxxb2013.073 [18] 王易,郑媛媛,孙康远等. 2018. 南京雷达中气旋产品特征值统计分析. 气象学报,76(2):266-278 doi: 10.11676/qxxb2017.087Wang Y,Zheng Y Y,Sun K Y,et al. 2018. A statistical analysis of characteristics of mesocyclone products from Nanjing radar. Acta Meteor Sinica,76(2):266-278 (in Chinese) doi: 10.11676/qxxb2017.087 [19] 王易,徐芬,吴海英. 2019. 一次致雹超级单体结构特征分析. 大气科学学报,42(4):612-620Wang Y,Xu F,Wu H Y. 2019. Structure characteristics analysis of a supercell hailstorm. Trans Atmos Sci,42(4):612-620 (in Chinese) [20] 吴芳芳,王慧,韦莹莹等. 2009. 一次强雷暴阵风锋和下击暴流的多普勒雷达特征. 气象,35(1):55-64 doi: 10.7519/j.issn.1000-0526.2009.01.007Wu F F,Wang H,Wei Y Y,et al. 2009. Analysis of a strong gust front and downburst with Doppler weather radar data. Meteor Mon,35(1):55-64 (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.01.007 [21] 吴举秀,周青,杨传凤等. 2017. 2015年7月14日阵风锋及锋后大风多普勒天气雷达产品特征分析. 高原气象,36(4):1082-1090Wu J X,Zhou Q,Yang C F,et al. 2017. Analysis on the weather radar products characteristics of the gust front and the wind after the gust front on July 14,2015. Plateau Meteor,36(4):1082-1090 (in Chinese) [22] 肖艳姣. 2018. 基于多普勒天气雷达体扫资料的MARC特征自动识别算法. 高原气象,37(1):264-274 doi: 10.7522/j.issn.1000-0534.2016.00143Xiao Y J. 2018. An algorithm of recognizing automatically MARC signature using the Doppler weather radar volume scanning data. Plateau Meteor,37(1):264-274 (in Chinese) doi: 10.7522/j.issn.1000-0534.2016.00143 [23] 肖艳姣,王珏,王志斌等. 2021. 基于S波段新一代天气雷达观测的下击暴流临近预报方法. 气象,47(8):919-931 doi: 10.7519/j.issn.1000-0526.2021.08.002Xiao Y J,Wang J,Wang Z B,et al. 2021. A downburst nowcasting method based on observations of S-band new generation weather radar. Meteor Mon,47(8):919-931 (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.08.002 [24] 俞小鼎,张爱民,郑媛媛等. 2006. 一次系列下击暴流事件的多普勒天气雷达分析. 应用气象学报,17(4):385-393 doi: 10.3969/j.issn.1001-7313.2006.04.001Yu X D,Zhang A M,Zheng Y Y,et al. 2006. Doppler radar analysis on a series of downburst events. J Appl Meteor Sci,17(4):385-393 (in Chinese) doi: 10.3969/j.issn.1001-7313.2006.04.001 [25] 张钢,潘运红,柳畅. 2011. 下击暴流区域特征提取和识别算法. 计算机工程与应用,47(28):185-187, 240 doi: 10.3778/j.issn.1002-8331.2011.28.051Zhang G,Pan Y H,Liu C. 2011. Microburst region feature extraction and recognition algorithm. Comput Eng Appl,47(28):185-187, 240 (in Chinese) doi: 10.3778/j.issn.1002-8331.2011.28.051 [26] 郑永光,田付友,孟智勇等. 2016. “东方之星”客轮翻沉事件周边区域风灾现场调查与多尺度特征分析. 气象,42(1):1-13 doi: 10.7519/j.issn.1000-0526.2016.01.001Zheng Y G,Tian F Y,Meng Z Y,et al. 2016. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship "Dongfangzhixing". Meteor Mon,42(1):1-13 (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.01.001 [27] 郑媛媛,俞小鼎,方翀等. 2004. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报,62(3):317-328 doi: 10.3321/j.issn:0577-6619.2004.03.006Zheng Y Y,Yu X D,Fang C,et al. 2004. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica,62(3):317-328 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.03.006 [28] 周后福,刁秀广,赵倩等. 2017. 一次连续下击暴流天气的成因分析. 干旱气象,35(4):641-648Zhou H F,Diao X G,Zhao Q,et al. 2017. Cause analysis of a continuous downburst weather. J Arid Meteor,35(4):641-648 (in Chinese) [29] 周康辉,郑永光,王婷波等. 2017. 基于模糊逻辑的雷暴大风和非雷暴大风区分方法. 气象,43(7):781-791 doi: 10.7519/j.issn.10000526.2017.07.002Zhou K H,Zheng Y G,Wang T B,et al. 2017. Fuzzy logic algorithm of thunderstorm gale identification using multisource data. Meteor Mon,43(7):781-791 (in Chinese) doi: 10.7519/j.issn.10000526.2017.07.002 [30] 周一民,张文滨,朱佩君. 2018. 我国江淮和黄淮地区强对流过程的基本特征. 浙江大学学报(理学版),45(2):205-218 doi: 10.3785/j.issn.1008-9497.2018.02.011Zhou Y M,Zhang W B,Zhu P J. 2018. General characteristics of the convection weather processes over Jianghuai and Huanghuai region. J Zhejiang Univ (Sci Ed),45(2):205-218 (in Chinese) doi: 10.3785/j.issn.1008-9497.2018.02.011 [31] Fujita T T,Byers H R. 1977. Spearhead echo and downburst in the crash of an airliner. Mon Wea Rev,105(2):129-146 doi: 10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2 [32] Fujita T T. 1985. The downburst, microburst and macroburst. SMRP Research Paper 210, Chicago: University of Chicago, 1-122 [33] Johns R H,Doswell Ⅲ C A. 1992. Severe local storms forecasting. Wea Forecast,7(4):588-612 doi: 10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2 [34] Kuster C M,Heinselman P L,Schuur T J. 2016. Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea Forecast,31(3):827-851 doi: 10.1175/WAF-D-15-0081.1 [35] Mahale V N,Zhang G F,Xue M. 2016. Characterization of the 14 June 2011 Norman,Oklahoma,downburst through dual-polarization radar observations and hydrometeor classification. J Appl Meteor Climatol,55(12):2635-2655 doi: 10.1175/JAMC-D-16-0062.1 [36] Potvin C K,Shapiro A,Xue M. 2012. Impact of a vertical vorticity constraint in variational dual-Doppler wind analysis:Tests with real and simulated supercell data. J Atmos Oceanic Technol,29(1):32-49 doi: 10.1175/JTECH-D-11-00019.1 [37] Proctor H F. 1988. Numerical simulations of an isolated microburst. Part Ⅰ:Dynamics and structure. J Atmos Sci,45(21):3137-3160 doi: 10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2 [38] Proctor H F. 1989. Numerical simulations of an isolated microburst. Part Ⅱ:Sensitivity experiments. J Atmos Sci,46(14):2143-2165 doi: 10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2 [39] Przybylinski R W. 1995. The bow echo:Observations,numerical simulations,and severe weather detection methods. Wea Forecast,10(2):203-218 doi: 10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2 [40] Roberts R D,Wilson J W. 1989. A proposed microburst nowcasting procedure using single-Doppler radar. J Appl Meteor,28(4):285-303 doi: 10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2 [41] Smith T M,Elmore K L,Dulin S A. 2004. A damaging downburst prediction and detection algorithm for the WSR-88D. Wea Forecast,19(2):240-250 doi: 10.1175/1520-0434(2004)019<0240:ADDPAD>2.0.CO;2 [42] Srivastava R C. 1985. A simple model of evaporatively driven downdraft:Application to microburst downdraft. J Atmos Sci,42(10):1004-1023 doi: 10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2 [43] Wakimoto R M. 1985. Forecasting dry microburst activity over the high plains. Mon Wea Rev,113(7):1131-1143 doi: 10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2 -