留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东亚夏季副热带平原和高原地区切变线特征的对比研究

姚秀萍 张霞 马嘉理 闫丽朱 张硕

姚秀萍,张霞,马嘉理,闫丽朱,张硕. 2022. 东亚夏季副热带平原和高原地区切变线特征的对比研究. 气象学报,80(4):604-617 doi: 10.11676/qxxb2022.024
引用本文: 姚秀萍,张霞,马嘉理,闫丽朱,张硕. 2022. 东亚夏季副热带平原和高原地区切变线特征的对比研究. 气象学报,80(4):604-617 doi: 10.11676/qxxb2022.024
Yao Xiuping, Zhang Xia, Ma Jiali, Yan Lizhu, Zhang Shuo. 2022. Comparative study on the characteristics of shear lines in the subtropical plain and plateau areas of East Asia in summer. Acta Meteorologica Sinica, 80(4):604-617 doi: 10.11676/qxxb2022.024
Citation: Yao Xiuping, Zhang Xia, Ma Jiali, Yan Lizhu, Zhang Shuo. 2022. Comparative study on the characteristics of shear lines in the subtropical plain and plateau areas of East Asia in summer. Acta Meteorologica Sinica, 80(4):604-617 doi: 10.11676/qxxb2022.024

东亚夏季副热带平原和高原地区切变线特征的对比研究

doi: 10.11676/qxxb2022.024
基金项目: 灾害天气国家重点实验室开放课题(2021LASW-B17)、国家自然科学基金项目(42030611、91937301)、第二次青藏高原综合科学考察研究项目(2019QZKK0105)
详细信息
    作者简介:

    姚秀萍,主要从事天气动力学及中尺度气象学研究与教学。E-mail:yaoxp@cma.gov.cn

  • 中图分类号: P404

Comparative study on the characteristics of shear lines in the subtropical plain and plateau areas of East Asia in summer

  • 摘要: 生成于东部平原地区的江淮切变线和西部青藏高原地区的高原切变线,都处在东亚副热带相同纬度带上。为深化对地形高度迥异的江淮切变线和高原切变线的认识与理解,基于ERA-interim再分析资料和合成分析方法,从切变线与暴雨关系、切变线三维结构特征、切变线附近风场与环流特征以及切变线结构演变中的热力机制等方面对二者进行对比研究。结果表明:(1)江淮切变线分为暖切变线、冷切变线、准静止切变线和低涡切变线4类,高原切变线分为高原横切变线和高原竖切变线2类。江淮切变线与高原切变线均与暴雨关系密切,夏季,有近70%的江淮切变线会产生暴雨,暖切变线暴雨对江淮地区切变线暴雨的雨量贡献最大,低涡切变线暴雨的降水强度最大但发生频率较低;近60%的高原横切变线给高原主体地区带来暴雨,超过55%的竖切变线造成高原东侧及其邻近地区暴雨。(2)江淮切变线与高原切变线均为边界层系统,特征层次分别位于850 hPa和500 hPa。时空尺度上,江淮冷切变线和高原横切变线水平尺度分别可达1000 km和2000 km,垂直伸展厚度分别可达5 km和2 km,生命期分别可达48 h和96 h;江淮切变线和高原横切变线在垂直方向上均有从低到高向北倾斜的特征。(3)江淮冷切变线与高原横切变线风场与环流特征存在差异,江淮冷切变线北侧为东北风,南侧为西南风;高原横切变线东、西两段风场有所不同,其西段类似于江淮冷切变线,东段在不同发展阶段风场有明显变化。(4)江淮冷切变线与高原横切变线的动力结构和热力结构存在差异。动力结构上,二者均位于正涡度带内,正涡度中心强度都在强盛阶段达到最大。热力结构上,江淮冷切变线附近低空锋区特征明显,其西段位于暖湿区内,东段位于干冷区内;高原横切变线南侧具有明显的高温、高湿特征,切变线北侧存在锋区结构。(5)切变线附近的大气非绝热加热与高原横切变线和江淮冷切变线演变关系密切,垂直非均匀加热作用是高原横切变线和江淮冷切变线发展增强最为重要的因子。二者热力结构有差异,减弱机制不同,干冷空气的侵入会导致高原横切变线强度减弱甚至消亡,江淮冷切变线的强度减弱则与南方暖湿空气的向北侵入有关。

     

  • 图 1  东亚副热带平原地区和青藏高原地区示意 (红框范围内:东亚副热带平原地区;黄线范围内:青藏高原地区,数据来源于“青藏高原边界数据总集”,张镱锂等,2014

    Figure 1.  Map of East Asian subtropical plain area and the Tibetan Plateau area (The red box denotes East Asian subtropical plain area,the yellow line indicates the Tibetan Plateau area;data are extracted from the Integration Dataset of Tibet Plateau Boundary,Zhang,et al,2014

    图 2  850 hPa江淮冷切变线的空间结构 (a) 和沿115°E的垂直剖面(b) (t=1、3为发展阶段,t=5为强盛阶段,t=7、9、10为减弱阶段)(Yan,et al,2019

    Figure 2.  Spatial structure of cold YHSL at 850 hPa (a) and in the vertical section along 115°E (b)( t=1,3 are the development stages,t=5 is the strong stage,and t=7,9,10 are the weakening stages)(Yan,et al,2019

    图 3  500 hPa高原横切变线的空间结构 (a) 和沿90°E的垂直剖面 (b)(点线为发展阶段,实线为强盛阶段,长短线为减弱阶段;黑色边界线为海拔3000 m以上的高原边界)(张硕,2019

    Figure 3.  Spatial structure of horizontal TPSL at 500 hPa (a) and in the vertical section along 90°E (b)(The dotted line indicates the development stage,the solid line indicates the strong stage,and the long-short line indicates the weakening stage;the black line outlines the Tibetan Platea boundary with elevation above 3000 m)(Zhang,2019

    图 4  850 hPa江淮冷切变线发展阶段 (a)、强盛阶段 (b)、减弱阶段 (c) 风场 (箭矢,单位:m/s) 特征合成 (虚线框为江淮地区,棕实线为江淮切变线)(Yan,et al,2019

    Figure 4.  Composite wind field (arrows,unit:m/s) characteristics of cold YHSL at 850 hPa in the development stage (a),strong stage (b) and weakening stage (c)(the dashed box indicates the Yangtze-Huaihe region,the brown line represents the YHSL)(Yan,et al,2019

    图 5  500 hPa高原横切变线发展阶段 (a)、强盛阶段 (b)、减弱阶段 (c) 风场 (箭矢,单位:m/s) 特征合成 (黑色粗实线为高原横切变线,黑色边界线为海拔3000 m以上青藏高原边界)(张硕等,2019

    Figure 5.  Composite wind field (arrows,unit:m/s) characteristics of horizontal TPSL at 500 hPa in the development stage (a), strong stage (b) and weakening stage (c)(The black thickened line indicates the horizontal TPSL;the black line shows the Tibetan Plateau boundary with elevation above 3000 m)(Zhang,et al,2019

    图 6  850 hPa江淮冷切变线发展阶段 (a1、b1)、强盛阶段 (a2、b2) 和减弱阶段 (a3、b3) 涡度 (a1—a3,色阶,单位:×10−5 s−1) 和散度 (b1—b3,色阶,单位:×10−6 s−1) 分布 (棕色实线为江淮冷切变线,虚线框为江淮地区)(Yan,et al,2019

    Figure 6.  Vorticity (a1—a3) and divergence (b1—b3) distributions of 850 hPa cold YHSL in the development stage (a1,b1),strong stage (a2,b2) and weakening stage (a3,b3)(The dashed box shows the Yangtze-Huaihe region,the brown line represents the cold YHSL;in (a),the shadings denote positive vorticity,unit:×10−5 s−1;in (b),the shadings denote convergence,unit:×10−6 s−1)(Yan,et al,2019

    图 7  500 hPa上高原横切变线发展阶段 (a)、强盛阶段 (b) 和减弱阶段 (c) 涡度分布 (黑色粗实线为高原横切变线;色阶为涡度正值,单位:×10−5 s−1)(张硕等,2019

    Figure 7.  Vorticity distributions of 500 hPa horizontal TPSL in the development stage (a),strong stage (b) and weakening stage (c)(the black thickened line indicates the horizontal TPSL,the shadings denote positive vorticity,unit:×10−5 s−1)(Zhang,et al,2019

    表  1  切变线个例

    Table  1.   Occurrence dates of shear lines

    高原切变线日期1986/
    8/24
    1989/
    6/24
    1992/
    6/23
    1992/
    6/27
    1993/
    8/8
    1994/
    6/17
    1999/
    6/24
    2004/
    7/22
    2007/
    7/17
    2010/
    6/6
    2011/
    7/2
    2012/
    6/2
    2016/
    7/5
    暴雨站数56651010561011101010
    江淮切变线日期1991/
    6/16
    1999/
    6/16
    2002/
    7/24
    2003/
    6/27
    2009/
    6/30
    2011/
    6/10
    2014/
    6/20
    2014/
    7/12
    2015/
    6/17
    2016/
    6/24
    暴雨站数328247321185731498432
    下载: 导出CSV
  • [1] 崔春光,胡伯威,王晓芳等. 2019. 相当正压切变型梅雨锋暴雨研究进展. 暴雨灾害,38(5):541-553

    Cui C G,Hu B W,Wang X F,et al. 2019. Research progress on the equivalent-barotropic shear type Meiyu front Heavyrain. Torrential Rain Disaster,38(5):541-553 (in Chinese)
    [2] 戴晓燕,过仲阳,吴健平等. 2006. 夏季青藏高原上影响MCS东移的动力场特征研究. 热带气象学报,22(6):600-604 doi: 10.3969/j.issn.1004-4965.2006.06.012

    Dai X Y,Guo Z Y,Wu J P,et al. 2006. A study on the features of dynamical field influencing MCS trajectories over the Tibetan Plateau in summer. J Trop Meteor,22(6):600-604 (in Chinese) doi: 10.3969/j.issn.1004-4965.2006.06.012
    [3] 段玮,肖子牛,周泓. 2017. 一次典型川滇切变线暴雨过程的诊断分析. 暴雨灾害,36(3):200-206

    Duan W,Xiao Z N,Zhou H. 2017. Diagnostic analysis of a typical Sichuan-Yunnan shear rainstorm event. Torrential Rain Disaster,36(3):200-206 (in Chinese)
    [4] 何光碧,高文良,屠妮妮. 2009. 2000-2007年夏季青藏高原低涡切变线观测事实分析. 高原气象,28(3):549-555

    He G B,Gao W L,Tu N N. 2009. The observational analysis of shear line and low vortex over the Tibetan Plateau in summer from 2000 to 2007. Plateau Meteor,28(3):549-555 (in Chinese)
    [5] 何光碧. 2013. 高原切变线研究回顾. 高原山地气象研究,33(1):90-96 doi: 10.3969/j.issn.1674-2184.2013.01.016

    He G B. 2013. Review of the Plateau shear-line studies. Plateau Mountain Meteor Res,33(1):90-96 (in Chinese) doi: 10.3969/j.issn.1674-2184.2013.01.016
    [6] 胡迪,李跃清. 2015. 青藏高原东侧四川地区夜雨时空变化特征. 大气科学,39(1):161-179 doi: 10.3878/j.issn.1006-9895.1405.13307

    Hu D,Li Y Q. 2015. Spatial and temporal variations of nocturnal precipitation in Sichuan over the eastern Tibetan Plateau. Chinese J Atmos Sci,39(1):161-179 (in Chinese) doi: 10.3878/j.issn.1006-9895.1405.13307
    [7] 李国平,张万诚. 2019. 高原低涡、切变线暴雨研究新进展. 暴雨灾害,38(5):464-471

    Li G P,Zhang W C. 2019. Recent advances in the research of heavy rain associated with vortices and shear lines come from the Tibetan Plateau. Torrential Rain Disaster,38(5):464-471 (in Chinese)
    [8] 刘建勇,谈哲敏,张熠. 2012. 梅雨期3类不同形成机制的暴雨. 气象学报,70(3):452-466 doi: 10.11676/qxxb2012.038

    Liu J Y,Tan Z M,Zhang Y. 2012. Study of the three types of torrential rains of different formation mechanism during the Meiyu period. Acta Meteor Sinica,70(3):452-466 (in Chinese) doi: 10.11676/qxxb2012.038
    [9] 隆霄,程麟生. 2004. “99.6”梅雨锋暴雨低涡切变线的数值模拟和分析. 大气科学,28(3):342-356 doi: 10.3878/j.issn.1006-9895.2004.03.03

    Long X,Cheng L S. 2004. Numerical simulation and analysis for "99.6" Meiyu front rainstorm and the low vortex with shear line. Chinese J Atmos Sci,28(3):342-356 (in Chinese) doi: 10.3878/j.issn.1006-9895.2004.03.03
    [10] 罗四维. 1963. 冬季我国高原东侧切变线形成的分析. 气象学报,33(3):305-319 doi: 10.11676/qxxb1963.029

    Luo S W. 1963. Formation analysis of shear line over the eastern Plateau in winter. Acta Meteor Sinica,33(3):305-319 (in Chinese) doi: 10.11676/qxxb1963.029
    [11] 罗雄,李国平. 2018. 一次高原切变线过程的数值模拟与阶段性结构特征. 高原气象,37(2):406-419 doi: 10.7522/j.issn.1000-0534.2017.00046

    Luo X,Li G P. 2018. Numerical simulation and stage structure characteristics of a plateau shear line process. Plateau Meteor,37(2):406-419 (in Chinese) doi: 10.7522/j.issn.1000-0534.2017.00046
    [12] 马嘉理,姚秀萍. 2015. 1981—2013年6—7月江淮地区切变线及暴雨统计分析. 气象学报,73(5):883-894 doi: 10.11676/qxxb2015.065

    Ma J L,Yao X P. 2015. Statistical analysis of the shear lines and torrential rains over the Yangtze-Huaihe river region during June-July in 1981-2013. Acta Meteor Sinica,73(5):883-894 (in Chinese) doi: 10.11676/qxxb2015.065
    [13] 马月枝,张霞,胡燕平. 2017. 2016年7月9日新乡暖区特大暴雨成因分析. 暴雨灾害,36(6):557-565

    Ma Y Z,Zhang X,Hu Y P. 2017. Cause analysis of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016. Torrential Rain Disasters,36(6):557-565 (in Chinese)
    [14] 覃丹宇,方宗义,江吉喜. 2006. 典型梅雨暴雨系统的云系及其相互作用. 大气科学,30(4):578-586 doi: 10.3878/j.issn.1006-9895.2006.04.04

    Qin D Y,Fang Z Y,Jiang J X. 2006. The cloud systems of heavy rainfall in the typical Meiyu period and their interactions. Chinese J Atmos Sci,30(4):578-586 (in Chinese) doi: 10.3878/j.issn.1006-9895.2006.04.04
    [15] 青藏高原气象科学研究拉萨会战组. 1981. 夏半年青藏高原500 hPa低涡切变线的研究. 北京:科学出版社,1-122

    Lhasa Battle Group of the Meteorological Sciences on the Qinghai-Tibet Plateau. 1981. Study on 500 mb Low Vortex Shear Line of Tibet Plateau. Beijing:Science Press,1-122 (in Chinese)
    [16] 陶诗言. 1980. 中国之暴雨. 北京:科学出版社,1-10

    Tao S Y. 1980. Torrential Rain in China. Beijing:Science Press,1-10 (in Chinese)
    [17] 王琳,肖天贵,张凯荣. 2015. 1998—2013年青藏高原切变线活动特征统计分析. 气候变化研究快报,4(4):206-219 doi: 10.12677/CCRL.2015.44024

    Wang L,Xiao T G,Zhang K R. 2015. Statistical analysis of shear line in Qinghai-Xizang Plateau activity characteristics from 1998 to 2013. Climate Change Res Lett,4(4):206-219 (in Chinese) doi: 10.12677/CCRL.2015.44024
    [18] 吴国雄,刘还珠. 1999. 全型垂直涡度倾向方程和倾斜涡度发展. 气象学报,57(1):2-16

    Wu G X,Liu H Z. 1999. Complete form of vertical vorticity tendency equation and slantwise vorticity development. Acta Meteor Sinica,57(1):2-16 (in Chinese)
    [19] 徐国昌. 1984. 500毫巴高原切变线的天气气候特征. 高原气象,3(1):36-41

    Xu G C. 1984. The climatologically synoptic characteristics of the shear line on the 500mb surface over the Qinghai-Xizang Plateau. Plateau Meteor,3(1):36-41 (in Chinese)
    [20] 闫丽朱. 2019. 江淮冷切变线结构演变特征及机制研究[D]. 北京: 中国气象科学研究院. Yan L Z. 2019. Analysis on structural characteristics and evolution mechanism of the Yangtze-Huaihe cold shear line [D]. Beijing: Chinese Academy of Meteorological Sciences (in Chinese)
    [21] 姚秀萍,孙建元,康岚等. 2014. 高原切变线研究的若干进展. 高原气象,33(1):294-300 doi: 10.7522/j.issn.1000-0534.2013.00164

    Yao X P,Sun J Y,Kang L,et al. 2014. Advances on research of shear convergence line over Qinghai-Xizang Plateau. Plateau Meteor,33(1):294-300 (in Chinese) doi: 10.7522/j.issn.1000-0534.2013.00164
    [22] 姚秀萍,孙建元,马嘉理. 2017. 江淮切变线研究的回顾与展望. 高原气象,36(4):1138-1151

    Yao X P,Sun J Y,Ma J L. 2017. Advances on research of Yangtze-Huaihe shear line. Plateau Meteor,36(4):1138-1151 (in Chinese)
    [23] 姚秀萍,张硕,闫丽朱. 2019. 青藏高原大气热源及其影响的研究进展. 大气科学学报,42(5):641-651 doi: 10.13878/j.cnki.dqkxxb.20181227001

    Yao X P,Zhang S,Yan L Z. 2019. Research progress on the atmospheric heat source over the Tibetan Plateau and its influence. Trans Atmos Sci,42(5):641-651 (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20181227001
    [24] 叶笃正. 1979. 青藏高原气象学. 北京:科学出版社,122-126

    Ye D Z. 1979. Meteorology of the Qinghai-Xizang Plateau. Beijing:Science Press,122-126 (in Chinese)
    [25] 郁淑华,高文良,彭骏. 2013. 近13年青藏高原切变线活动及其对中国降水影响的若干统计. 高原气象,32(6):1527-1537 doi: 10.7522/j.issn.1000-0534.2012.00149.

    Yu S H,Gao W L,Peng J. 2013. Statistical analysis of shearline activity in QXP and its influence on rainfall in China in recent 13 years. Plateau Meteor,32(6):1527-1537 (in Chinese) doi: 10.7522/j.issn.1000-0534.2012.00149.
    [26] 张京英,张可欣,魏玉鹏. 2008. 一次江淮切变线系统结构和暴雨分析. 山东气象,28(4):1-6

    Zhang J Y,Zhang K X,Wei Y P. 2008. Structure and corresponding rainstorm of a JiangHuai shearline. J Shandong Meteor,28(4):1-6 (in Chinese)
    [27] 张顺利,陶诗言. 2002. 青藏高原对1998年长江流域天气异常的影响. 气象学报,60(4):442-452 doi: 10.3321/j.issn:0577-6619.2002.04.007

    Zhang S L,Tao S Y. 2002. The influences of Tibetan Plateau on weather anomalies over Changjiang River in 1998. Acta Meteor Sinica,60(4):442-452 (in Chinese) doi: 10.3321/j.issn:0577-6619.2002.04.007
    [28] 张硕. 2019. 青藏高原切变线结构特征及其与高原非绝热加热的关系[D]. 成都: 成都信息工程大学. Zhang S. 2019. Structural characteristics of shear line and its relationship with adiabatic heating over the Tibetan Plateau [D]. Chengdu: Chengdu University of Information Technology (in Chinese)
    [29] 张硕,姚秀萍,巩远发. 2019. 基于客观判识的青藏高原横切变线结构及演变特征合成研究. 气象学报,77(6):1086-1106 doi: 10.11676/qxxb2019.058

    Zhang S,Yao X P,Gong Y F. 2019. A synthetic study of the structure and evolution characteristics of a meridionally-oriented shearline over the Tibetan Plateau based on objective identification. Acta Meteor Sinica,77(6):1086-1106 (in Chinese) doi: 10.11676/qxxb2019.058
    [30] 张镱锂,李炳元,郑度. 2014. 《论青藏高原范围与面积》一文数据的发表——青藏高原范围界线与面积地理信息系统数据. 地理学报,69(S1):65-68 doi: 10.11821/dlxb2014S012

    Zhang Y L,Li B Y,Zheng D. 2014. Datasets of the boundary and area of the Tibetan Plateau. Acta Geogr Sinica,69(S1):65-68 doi: 10.11821/dlxb2014S012
    [31] 赵大军,姚秀萍. 2017. 北京“7·21”特大暴雨过程中的干侵入指数特征研究. 暴雨灾害,36(6):527-534

    Zhao D J,Yao X P. 2017. Characteristics of the dry intrusion index in an extreme torrential rain event occurred on 21 July 2012 in Beijing. Torrential Rain Disasters,36(6):527-534 (in Chinese)
    [32] 朱乾根,周军. 1986a. 江淮地区急流切变线暴雨的物理机制及诊断分析. 南京气象学院学报,(4):315-324

    Zhu Q G,Zhou J. 1986a. Physical mechanism and diagnosis of rainstorms associated with the jet stream and shearline over the Changjiang-Huaihe Valley. J Nanjing Inst Meteor,(4):315-324 (in Chinese)
    [33] 朱乾根,周军. 1986b. 急流切变线暴雨的诊断分析. 气象,12(6):2-6

    Zhu Q G,Zhou J. 1986b. Diagnostic analysis on jet stream shear line heavy rainfall. Meteor Mon,12(6):2-6 (in Chinese)
    [34] 朱乾根,林锦瑞,寿绍文等. 2020. 天气学原理和方法. 3版. 北京:气象出版社,366pp

    Zhu Q G,Lin J R,Shou S W,et al. 2020. The Principle and Method of Weather. 3rd ed. Beijing:China Meteorological Press,366pp (in Chinese)
    [35] Yan L Z,Yao X P. 2019. Structural characteristics of the Yangtze-Huaihe cold shear line over eastern China in summer. Atmosphere,10(4):207 doi: 10.3390/atmos10040207
    [36] Yanai M,Li C F,Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteor Soc Japan,70(1B):319-351 doi: 10.2151/jmsj1965.70.1B_319
    [37] Yao X P,Ma J L,Zhang D L,et al. 2020a. A 33-yr Mei-Yu-Season climatology of shear lines over the Yangtze-Huai River basin in eastern China. J Appl Meteor Climatol,59(6):1125-1137 doi: 10.1175/JAMC-D-19-0229.1
    [38] Yao X P,Zhang X,Ma J L. 2020b. Characteristics of the meridionally oriented shear lines over the Tibetan Plateau and its relationship with rainstorms in the boreal summer half-year. J Trop Meteor,26(1):93-102
    [39] Zhang X,Yao X P,Ma J L,et al. 2016. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer. J Meteor Res,30(6):915-926 doi: 10.1007/s13351-016-6952-7
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  25
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2022-01-26
  • 网络出版日期:  2022-02-22

目录

    /

    返回文章
    返回