留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前期青藏高原积雪与ENSO对南海夏季风强度的协同影响

邓琪 赵平 温之平 王慧美 王迎春

邓琪,赵平,温之平,王慧美,王迎春. 2022. 前期青藏高原积雪与ENSO对南海夏季风强度的协同影响. 气象学报,80(4):491-502 doi: 10.11676/qxxb2022.026
引用本文: 邓琪,赵平,温之平,王慧美,王迎春. 2022. 前期青藏高原积雪与ENSO对南海夏季风强度的协同影响. 气象学报,80(4):491-502 doi: 10.11676/qxxb2022.026
Deng Qi, Zhao Ping, Wen Zhiping, Wang Huimei, Wang Yingchun. 2022. Synergistic effects of the Tibetan Plateau snow and ENSO as preceding signals on the intensity of South China Sea summer monsoon. Acta Meteorologica Sinica, 80(4):491-502 doi: 10.11676/qxxb2022.026
Citation: Deng Qi, Zhao Ping, Wen Zhiping, Wang Huimei, Wang Yingchun. 2022. Synergistic effects of the Tibetan Plateau snow and ENSO as preceding signals on the intensity of South China Sea summer monsoon. Acta Meteorologica Sinica, 80(4):491-502 doi: 10.11676/qxxb2022.026

前期青藏高原积雪与ENSO对南海夏季风强度的协同影响

doi: 10.11676/qxxb2022.026
基金项目: 第二次青藏高原综合科学考察研究(2019QZKK020803)和丝路环境先导专项(XDA2010030807)
详细信息
    作者简介:

    邓琪,主要从事青藏高原气象学、气候变化研究。E-mail:1203964028@qq.com

    通讯作者:

    赵平,主要从事青藏高原气象学和季风研究。E-mail:zhaop@cma.gov.cn

  • 中图分类号: P466

Synergistic effects of the Tibetan Plateau snow and ENSO as preceding signals on the intensity of South China Sea summer monsoon

  • 摘要: 基于1980—2018年罗格斯大学全球积雪实验室积雪面积、英国气象局哈得来中心海温、欧洲中期天气预报中心(ECMWF)第5代再分析(ERA-5)土壤湿度、美国国家环境预报中心和美国国家大气研究中心(NCEP/NCAR)再分析、美国国家海洋大气管理局(NOAA)气候预测中心降水(CMAP)和全球降水气候计划降水(GPCP)等数据,采用相关、合成和回归等分析方法,分析了前期青藏高原积雪和厄尔尼诺-南方涛动(ENSO)年际尺度变化对南海夏季风强度及降水的协同影响。结果表明:在年际尺度上,青藏高原积雪、ENSO与南海夏季风变率有密切关系,当青藏高原春季积雪西部偏多且东部偏少时,夏季高原西部对流层温度偏低,在高原上空产生异常下沉气流并向外辐散,引起中国南海地区对流层中低层为异常下沉气流。另外,赤道中东太平洋海温异常偏高则会使夏季印度洋海温异常偏高,对流层温度偏高,在西北太平洋产生东北风异常,加强西北太平洋和中国南海上空的反气旋性环流异常。在青藏高原积雪和ENSO共同影响下,夏季850 hPa中国南海上空反气旋异常进一步加强,南海夏季风强度减弱,降水减少。

     

  • 图 1  1980—2018年去掉线性趋势后南海夏季风指数 ($ {I}_{\rm s} $) 的时间序列 (黑色实线分别表示1.5和−1.5)

    Figure 1.  Time series of the South China Sea summer monsoon index ($ {I}_{\rm s} $) during 1980—2018 after the linear trend is removed (black solid lines represent 1.5 and −1.5,respectively)

    图 2  南海夏季风指数低、高年 ($ {I}_{\rm s} $,低−高) 合成的夏季大气环流和降水差异 (a. 850 hPa风场 (箭矢,单位:m/s)、位势高度场 (黑色等值线,单位:gpm) 和向外长波辐射 (色阶,单位:W/m2),b. 500 hPa风场 (箭矢,单位:m/s) 和位势高度场 (色阶,单位: gpm),c. 200 hPa风场 (箭矢,单位:m/s) 和位势高度场 (色阶,单位: gpm),d. 降水场 (单位:mm/d,等值线为GPCP降水量,色阶为CMAP降水量);打点区域表示达到95%显著性水平)

    Figure 2.  Composite differences of summer atmospheric circulation and precipitation between the years of low-$ {I}_{\rm s} $ and high-${I}_{\rm{s}}$ (a) 850 hPa horizontal wind (vectors,unit:m/s),geopotential height (contours,unit:gpm) and outgoing longwave radiation (shaded,unit:W/m2);(b) 500 hPa horizontal wind (vectors,unit:m/s) and geopotential height (shaded,unit:gpm);(c) same as (b) but for 200 hPa;(d) precipitation (unit:mm/d,contours denote GPCP precipitation,shadings denote CMAP precipitation)(Dotted areas indicate the differences are significant at the 95% confidence level)

    图 3  $ {I}_{\rm s} $ (a) 高年和 (b) 低年合成的春季青藏高原积雪面积 (单位:%),(c)低年与高年的合成差异 (黑色曲线区域为青藏高原海拔超过2500 m的地区,左、右两个黑色方框分别表示高原西部和东部地区,打点区域表示达到90%显著性水平)

    Figure 3.  Composite snow cover (unit:%) in (a) high-$ {I}_{\rm s} $ years and (b) low-$ {I}_{\rm s} $ years,(c) composite differences of TP snow cover between (b) and (a)(The black curve line denotes the area with elevation above 2500 m,the black boxes denote the eastern and western TP respectively,dotted areas indicate the differences significant at the 90% confidence level)

    图 4  高原积雪指数低、高年 ($ {I}_{\mathrm{T}\mathrm{P}\mathrm{S}\mathrm{C}} $,高−低) 合成的夏季大气环流和降水差异 (a . 850 hPa风场 (箭头,单位:m/s)、位势高度场 (等值线,单位:gpm) 和向外长波辐射 (色阶,单位:W/m2), b. 降水场 (单位:mm/d),等值线为GPCP降水量,色阶为CMAP降水量;打点区域表示达到95%显著性水平)

    Figure 4.  Composite differences of summer atmospheric circulation and precipitation between the years of high-$ {I}_{\rm{TPSC}} $ and low-$ {I}_{\rm{TPSC}} $ (a. 850 hPa horizontal wind (vectors,unit:m/s),geopotential height (contours, unit:gpm) and outgoing longwave radiation (shadings,unit:W/m2),b. precipitation (unit:mm/d,contours denote GPCP precipitation,shadings denote CMAP precipitation);dotted areas indicate the differences significant at the 95% confidence level)

    图 5  1980—2018年$ {I}_{\rm s} $与海表温度相关系数的空间分布 (a. 前期秋季, b. 前期冬季, c. 前期春季, d. 同期夏季;点区表示达到95%显著性水平)

    Figure 5.  Spatial distribution of correlation coefficient between $ {I}_{\rm s} $ and sea surface temperature during 1980—2018 (a. preceding autumn,b. preceding winter,c. preceding spring,d. concurrent summer;dotted areas are for differences significant at the 95% confidence level)

    图 6  高原积雪独立指数高、低年 ($ {I}_{\rm{TPSC\_I}} $,高−低) 合成的(a)土壤湿度 (单位:m3/m3) 差异沿着34°N的时间-经度剖面和(b)500 hPa温度 (单位:℃) 差异沿点 (40°N,60°E) 到点(10°N,150°E) 的时间-空间剖面 (点区表示差异达到90%显著性水平)

    Figure 6.  (a) Time-longitude cross-section of composite soil moisture differences (unit:m3/m3) between the years of high-$ {I}_{\rm{TPSC\_I}} $ and low-$ {I}_{\rm{TPSC\_I}} $ along 34°N and (b) time-spatial cross-section of composite 500 hPa temperature differences (unit:℃) from the point (40°N,60°E) to point (10°N,150°E)(Dotted areas indicate the differences significant at the 90% confidence level)

    图 7  $ {I}_{\rm{TPSC\_I}} $高、低年合成的夏季 (a) 温度 (色阶,单位:℃)、位势高度 (等值线,单位:gpm) 和(b)垂直环流差异 (箭矢,水平风,单位:m/s,垂直速度乘以−10) 沿点 (60°N,60°E) 到点(EQ,120°E) 的垂直剖面

    Figure 7.  Oblique sections for composite differences between the years of high-$ {I}_{\rm{TPSC\_I}} $ and low-$ {I}_{\rm{TPSC\_I}} $ cases from the point (60°N,60°E) to point (EQ,120°E):(a) temperature (shaded,unit:℃),geopotential height (contours,unit:gpm) and (b) vertical circulation (vectors,horizontal,unit:m/s,vertical speed is multiplied by −10)

    图 8  1980—2018年海表温度与ENSO独立指数($ {I}_{\rm{ENSO\_I}} $)相关系数的空间分布 (a. 前期冬季, b. 春季;点区表示差异达到99%显著性水平)

    Figure 8.  Spatial distributions of correlation coefficients between sea surface temperature and independent ENSO index ($ {I}_{\rm{ENSO\_I}} $) during 1980—2018 (a. preceding winter,b. spring; dotted areas indicate the differences significant at the 99% confidence level)

    图 9  $ {I}_{\rm s} $ 低、高年 (低−高) 合成的海表温度 (色阶,单位:℃) 和表面风场 (箭头,单位:m/s) 差异 (a. 前期冬季, b. 前期春季, c. 同期夏季)

    Figure 9.  Composite differences of sea surface temperature (shaded,unit:°C) and surface horizontal wind (vectors,unit:m/s) between the years of low-$ {I}_{\rm s} $ and high-$ {I}_{\rm s} $ (a. preceding winter,b. preceding spring, c. concurrent summer)

    图 10  $ {I}_{\rm{TPSC\_I}} $高、低年 (高−低) 合成的夏季风场 (箭矢,单位:m/s) 和位势高度 (色阶,单位:gpm) 差异 (a. 200 hPa, b. 500 hPa, c. 850 hPa)。(d—f)同(a—c),但为$ {I}_{\rm{ENSO\_I}} $,(g—i)为$ {I}_{\rm{ss}} $(打点区域通过90%的显著性t检验,黑色曲线为高原地区)

    Figure 10.  Composite differences of horizontal wind (vectors,unit:m/s) and geopotential height (shaded,unit:gpm) between the years of high-$ {I}_{\rm{TPSC\_I}} $ and low-$ {I}_{\rm{TPSC\_I}} $ (a. 200 hPa, b. 500 hPa,c. 850 hPa),(d—f) same as (a—c) but for $ {I}_{\rm{ENSO\_I}} $ and (g—i) for $ {I}_{\mathrm{s}\mathrm{s}} $ (Dotted areas indicate the differences significant at the 90% confidence level,and the black curve denotes the TP area)

    图 11  (a)$ {I}_{\rm{TPSC\_I}} $高、低年 (高−低) 合成的GPCP降水量差异 (单位:mm/d),(b—c)同(a),但分别为$ {I}_{\rm{ENSO\_I}} $$ {I}_{\mathrm{s}\mathrm{s}} $;(d—f) 同 (a—c),但为CMAP降水资料 (打点区域表示达到90%显著性水平,黑框为中国南海季风区)

    Figure 11.  (a) Composite differences of GPCP precipitation (unit:mm/d) between the years of high-$ {I}_{\rm{TPSC\_I}} $ and low-$ {I}_{\rm{TPSC\_I}} $; (b—c) same as (a) but for $ {I}_{\rm{ENSO\_I}} $ and $ {I}_{\mathrm{s}\mathrm{s}} $respectively; (d—f) same as (a—c) but for CMAP precipitation (Dotted areas indicate the differences significant at the 90% confidence leve,and black box denotes the South China Sea monsoon area)

    表  1  高原积雪指数($ {I}_{\rm{TPSC}} $)、ENSO指数($ {I}_{\rm{ENSO}} $)与$ {I}_{\rm s} $ 的相关、偏相关系数以及积雪-ENSO协同指数($ {I}_{\rm{ss}} $)与$ {I}_{\rm s} $ 的相关系数

    Table  1.   Correlation and partial correlation coefficients between $ {I}_{\rm{TPSC}} $$ {I}_{\rm{ENSO}} $ and $ {I}_{\rm s} $ as well as correlation coefficient between $ {I}_{\rm{ss}} $ and $ {I}_{\rm s} $

    与$ {I}_{\rm s} $ 相关系数与$ {I}_{\rm s} $ 偏相关系数
    $ {I}_{\rm{TPSC}} $−0.38*−0.27
    $ {I}_{\rm{ENSO}} $−0.47**−0.39*
    $ {I}_{\rm{ss}} $−0.55**
    注:*表示95%显著性,**表示99%显著性。
    下载: 导出CSV
  • [1] 鲍媛媛. 2021.2019年南海季风爆发异常偏早的机制分析. 气象学报. 79(3): 400-413

    Bao Y Y. 2021. Mechanisms for the abnormally early onset of the South China Sea summer monsoon in 2019. Acta Meteor Sinica, 79(3): 400-413 (in Chinese)
    [2] 陈乾金,高波,张强. 2000. 青藏高原冬季雪盖异常与冬夏季风变异及其相互联系的物理诊断研究. 大气科学,24(4):477-492 doi: 10.3878/j.issn.1006-9895.2000.04.05

    Chen Q J,Gao B,Zhang Q. 2000. Studies on relation of snow cover over the Tibetan Plateau in winter to the winter-summer monsoon change. Chinese J Atmos Sci,24(4):477-492 (in Chinese) doi: 10.3878/j.issn.1006-9895.2000.04.05
    [3] 丁一汇,李崇银,何金海等. 2004. 南海季风试验与东亚夏季风. 气象学报,62(5):561-586 doi: 10.3321/j.issn:0577-6619.2004.05.005

    Ding Y H,Li C Y,He J H,et al. 2004. South China Sea monsoon experiment (SCSMEX) and the East-Asian monsoon. Acta Meteor Sinica,62(5):561-586 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.05.005
    [4] 高辉,梁建茵. 2005. 南海夏季风建立日期的确定和东亚夏季风强度指数的选取. 热带气象学报,21(5):525-532 doi: 10.3969/j.issn.1004-4965.2005.05.009

    Gao H,Liang J Y. 2005. Definition of South China Sea summer monsoon's onset date and East Asian summer monsoon's index. J Trop Meteor,21(5):525-532 (in Chinese) doi: 10.3969/j.issn.1004-4965.2005.05.009
    [5] 胡淼,龚道溢,王璐等. 2012. 1—3月北极涛动对北半球热带太平洋和大西洋对流活动的可能影响. 气象学报,70(3):479-491 doi: 10.11676/qxxb2012.040

    Hu M,Gong D Y,Wang L,et al. 2012. Possible influence of January-March arctic oscillation on the convection of tropical North Pacific and North Atlantic. Acta Meteor Sinica,70(3):479-491 (in Chinese) doi: 10.11676/qxxb2012.040
    [6] 李崇银,张利平. 1999. 南海夏季风活动及其影响. 大气科学,23(3):257-266 doi: 10.3878/j.issn.1006-9895.1999.03.01

    Li C Y,Zhang L P. 1999. Summer monsoon activities in the South China Sea and its impacts. Chinese J Atmos Sci,23(3):257-266 (in Chinese) doi: 10.3878/j.issn.1006-9895.1999.03.01
    [7] 李崇银,潘静. 2007. 南海夏季风槽的年际变化和影响研究. 大气科学,31(6):1049-1058 doi: 10.3878/j.issn.1006-9895.2007.06.02

    Li C Y,Pan J. 2007. The interannual variation of the South China Sea summer monsoon trough and its impact. Chinese J Atmos Sci,31(6):1049-1058 (in Chinese) doi: 10.3878/j.issn.1006-9895.2007.06.02
    [8] 李青,刘宣飞,潘敖大. 2008. 青藏高原冬春季积雪影响南海季风爆发的机制. 南京气象学院学报,31(2):214-220

    Li Q,Liu X F,Pan A D. 2008. Mechanism of impacts of winter-spring snow cover over the Tibetan Plateau on South China Sea monsoon onset. J Nanjing Inst Meteor,31(2):214-220 (in Chinese)
    [9] 梁建茵,吴尚森. 2000. 南海西南季风多时间尺度变化及其与海温的相互作用. 应用气象学报,11(1):95-104 doi: 10.3969/j.issn.1001-7313.2000.01.012

    Liang J Y,Wu S S. 2000. The multi-time scale variations of summer monsoon over South China Sea and its interaction with SST anomaly. J Appl Meteor Sci,11(1):95-104 (in Chinese) doi: 10.3969/j.issn.1001-7313.2000.01.012
    [10] 钱永甫,张艳,郑益群. 2003. 青藏高原冬春季积雪异常对中国春夏季降水的影响. 干旱气象,21(3):1-7

    Qian Y F,Zhang Y,Zheng Y Q. 2003. Impacts of the Tibetan Plateau snow anomaly in winter and spring on precipitation in China in spring and summer. Arid Meteor,21(3):1-7 (in Chinese)
    [11] 魏凤英. 1999. 现代气候统计诊断与预测技术. 北京:气象出版社,30-33

    Wei F Y. 1999. Modern Climatic Statistical Diagnosis and Forecasting Technology. Beijing:China Meteorological Press,30-33 (in Chinese)
    [12] 吴尚森,梁建茵. 2001. 南海夏季风强度指数及其变化特征. 热带气象学报,17(4):337-344 doi: 10.3969/j.issn.1004-4965.2001.04.001

    Wu S S,Liang J Y. 2001. An index of South China Sea summer monsoon intensity and its variation characters. J Trop Meteor,17(4):337-344 (in Chinese) doi: 10.3969/j.issn.1004-4965.2001.04.001
    [13] 吴尚森,梁建茵,李春晖. 2003. 南海夏季风强度与我国汛期降水的关系. 热带气象学报,19(S1):25-36 doi: 10.16032/j.issn.1004-4965.2003.s1.003

    Wu S S,Liang J Y,Li C H. 2003. Relationship between the intensity of South China Sea summer monsoon and the precipitation in raining seasons in China. J Trop Meteor,19(S1):25-36 (in Chinese) doi: 10.16032/j.issn.1004-4965.2003.s1.003
    [14] 姚永红,钱永甫. 2001. 用湿位涡定义的南海西南季风指数及其与我国区域降水的关系研究. 南京大学学报(自然科学),37(6):781-788

    Yao Y H,Qian Y F. 2001. A study on the South China Sea monsoon index and the relationship between the index and regional rainfalls of China. J Nanjing Univ (Nat Sci),37(6):781-788 (in Chinese)
    [15] 于乐江,胡敦欣. 2008. 青藏高原春季积雪在南海夏季风爆发过程中的作用. 地球物理学报,51(6):1682-1694 doi: 10.3321/j.issn:0001-5733.2008.06.008

    Yu L J,Hu D X. 2008. Role of snow depth in spring of Tibetan Plateau in onset of South China Sea summer monsoon. Chinese J Geophys,51(6):1682-1694 (in Chinese) doi: 10.3321/j.issn:0001-5733.2008.06.008
    [16] 赵平, 陈隆勋. 2000. 青藏高原大气热量源汇在海-地-气相互作用准4 年振荡中的作用. 科学通报, 45 (15), 1666-1671.

    Zhao P, Chen L X. 2000. Role of atmospheric heat source/sink over the Qinghai-Xizang Plateau in quasi-4-year oscillation of atmosphere-land-ocean interaction. Chinese Sci Bull, 46(3): 241-245
    [17] 周秀骥, 赵平, 陈军明, 陈隆勋, 李维亮. 2009. 青藏高原热力作用对北半球气候影响的研究. 中国科学(D 辑: 地球科学), 39(11): 1473-1486.

    Zhou X J, Zhao P, Chen J M, Chen L X, Li W L. 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci China Ser D-Earth Sci, 52(11): 1679-1693
    [18] 周悦,刘宣飞,陈海山. 2011. 青藏高原冬春积雪影响南海季风爆发的数值研究. 热带气象学报,27(6):912-919 doi: 10.3969/j.issn.1004-4965.2011.06.015

    Zhou Y,Liu X F,Chen H S. 2011. Numerical study of effects of winter-spring snow cover over the Tibetan Plateau on the South China Sea monsoon onset. J Trop Meteor,27(6):912-919 (in Chinese) doi: 10.3969/j.issn.1004-4965.2011.06.015
    [19] Alexander M A,Bladé I,Newman M,et al. 2002. The atmospheric bridge:The influence of ENSO teleconnections on air-sea interaction over the global oceans. J Climate,15(16):2205-2231 doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
    [20] Annamalai H,Liu P,Xie S P. 2005. Southwest Indian Ocean SST variability:Its local effect and remote influence on Asian monsoons. J Climate,18(20):4150-4167 doi: 10.1175/JCLI3533.1
    [21] Fan Y,Fan K. 2017. Pacific decadal oscillation and the decadal change in the intensity of the interannual variability of the South China Sea summer monsoon. Atmos Oceanic Sci Lett,10(2):162-167 doi: 10.1080/16742834.2016.1256189
    [22] Gong D Y,Yang J,Kim S J,et al. 2011. Spring Arctic oscillation-east Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn,37(11-12):2199-2216 doi: 10.1007/s00382-011-1041-1
    [23] Hersbach H,Dee D. 2016. ERA5 reanalysis is in production. Bracknell:ECMWF,7
    [24] Jiang N,Zhu C W. 2021. Seasonal forecast of South China Sea summer monsoon onset disturbed by cold tongue La Niña in the past decade. Adv Atmos Sci,38(1):147-155 doi: 10.1007/s00376-020-0090-y
    [25] Jin R,Wu Z W,Zhang P. 2018. Tibetan Plateau capacitor effect during the summer preceding ENSO:From the Yellow River climate perspective. Climate Dyn,51(1-2):57-71 doi: 10.1007/s00382-017-3906-4
    [26] Joseph D,Kumar V S. 2021. Response of ocean surface waves to the co-occurrence of boreal summer intra-seasonal Oscillation and El Nino Southern Oscillation. Climate Dyn,57(11):1155-1171
    [27] Kalnay E,Kanamitsu M,Kistler R,et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc,77(3):437-472 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [28] Liu G,Wu R G,Zhang Y Z,et al. 2014. The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the Mei-yu-Baiu region. Adv Atmos Sci,31(4):755-764 doi: 10.1007/s00376-013-3183-z
    [29] Nan S L,Li J P. 2003. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring southern hemisphere annular mode. Geophys Res Lett,30(24):2266
    [30] Nan S L,Zhao P,Yang S,Chen J M. 2009. Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J Geophys Res,114:D10104 doi: 10.1029/2008JD011559
    [31] Rayner N A,Parker D E,Horton E B,et al. 2003. Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late Nineteenth Century. J Geophys Res Atmos,108(D14):4407 doi: 10.1029/2002JD002670
    [32] Wang B,Wu R G,Fu X H. 2000. Pacific-East Asian teleconnection:How does ENSO affect East Asian climate?. J Climate,13(9):1517-1536 doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [33] Wang B,Wu Z W,Li J P,et al. 2008. How to measure the strength of the East Asian summer monsoon. J Climate,21(17):4449-4463 doi: 10.1175/2008JCLI2183.1
    [34] Wang L,Chen G H. 2018. Relationship between South China Sea summer monsoon onset and landfalling tropical cyclone frequency in China. Int J Climatol,38(7):3209-3214 doi: 10.1002/joc.5485
    [35] Wu G X,Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Wea Rev,126(4):913-927 doi: 10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2
    [36] Xie P P,Arkin P A. 1997. Global precipitation:A 17-year monthly analysis based on gauge observations,satellite estimates,and numerical model outputs. Bull Amer Meteor Soc,78(11):2539-2558 doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
    [37] Xie S P,Hu K M,Hafner J,et al. 2009. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Climate,22(3):730-747 doi: 10.1175/2008JCLI2544.1
    [38] Zeng Z J,Guo Y Y,Wen Z P. 2021. Interdecadal change in the relationship between the bay of Bengal summer monsoon and South China Sea summer monsoon onset. Front Earth Sci,8:610982 doi: 10.3389/feart.2020.610982
    [39] Zhang X Z,Wu M W,Liu Y,et al. 2018. The relationship between the East Asian summer monsoon and El Niño-Southern Oscillation revealed by reconstructions and a control simulation for millennium. Quatern Int,493:106-113 doi: 10.1016/j.quaint.2018.06.024
    [40] Zhao P,Chen L X. 2001. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv Atmos Sci,18(1):106-116
    [41] Zhao P,Zhou Z J,Liu J P. 2007. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall:An observational investigation. J Climate,20(15):3942-3955 doi: 10.1175/JCLI4205.1
    [42] Zhao P,Zhang X,Li Y F,et al. 2009. Remotely modulated tropical-North Pacific ocean-atmosphere interactions by the South Asian high. Atmos Res,94:45-60 doi: 10.1007/s00382-009-0699-0
    [43] Zhao P,Wang B,Liu J P,et al. 2016. Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus ENSO. Sci Rep,6:21346 doi: 10.1038/srep21346
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  61
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 录用日期:  2022-06-13
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-02-24

目录

    /

    返回文章
    返回