留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沿海城市极端气温对脑卒中死亡的滞后定量影响

鹿文涵 谷少华 孙仕强 张程明 朱宪春

鹿文涵,谷少华,孙仕强,张程明,朱宪春. 2022. 沿海城市极端气温对脑卒中死亡的滞后定量影响. 气象学报,80(3):449-459 doi: 10.11676/qxxb2022.030
引用本文: 鹿文涵,谷少华,孙仕强,张程明,朱宪春. 2022. 沿海城市极端气温对脑卒中死亡的滞后定量影响. 气象学报,80(3):449-459 doi: 10.11676/qxxb2022.030
Lu Wenhan, Gu Shaohua, Sun Shiqiang, Zhang Chengming, Zhu Xianchun. 2022. Quantitative lagged effects of extreme temperature on stroke deaths in a coastal city. Acta Meteorologica Sinica, 80(3):449-459 doi: 10.11676/qxxb2022.030
Citation: Lu Wenhan, Gu Shaohua, Sun Shiqiang, Zhang Chengming, Zhu Xianchun. 2022. Quantitative lagged effects of extreme temperature on stroke deaths in a coastal city. Acta Meteorologica Sinica, 80(3):449-459 doi: 10.11676/qxxb2022.030

沿海城市极端气温对脑卒中死亡的滞后定量影响

doi: 10.11676/qxxb2022.030
基金项目: 宁波市科技公益类计划项目(2019C50003)、宁波市自然科学基金项目(2019A610379)
详细信息
    作者简介:

    鹿文涵,主要从事天气预报和健康气象方面的研究。E-mail:76292651@qq.com

    通讯作者:

    孙仕强,主要从事天气预报和环境气象方面的研究。E-mail:419133569@qq.com

  • 中图分类号: P49

Quantitative lagged effects of extreme temperature on stroke deaths in a coastal city

  • 摘要: 当夏季和冬季出现极端气温时,脑卒中死亡有明显增加,但不同地区极端气温对脑卒中死亡的影响不同。以宁波为沿海城市的代表,采用2013—2019年宁波市脑卒中死亡病例和同期的气温数据,利用分布滞后非线性模型(DLNM),研究了极端气温对不同群组脑卒中死亡的滞后定量影响。结果表明:(1)极端高温对除低龄组外的其他人群脑卒中死亡效应趋势基本一致,即累积相对危险度(RR)及95%置信区间(95%CI)随时间延长增大,热累积促进效应随时间增强,对全部人群滞后3 d内的脑卒中死亡有促进效应。40℃滞后0—1 d、0—2 d和0—3 d累积相对危险度(95%CI)分别为1.29(1.17—1.43)、1.38(1.22—1.55)和1.41(1.25—1.60)。(2)极端低温对不同人群脑卒中死亡促进效应趋势不同,对于全部人群,当天没有明显的促进效应,滞后第3到4天开始有明显的促进效应,累积相对危险度(95%CI)随时间增大,低温累积促进效应随时间增强,滞后15 d后对脑卒中死亡无明显的促进效应。−4℃滞后0—5 d、0—10 d和0—15 d累积相对危险度(95%CI)分别为1.23(1.00—1.50)、1.61(1.22—2.12)和1.95(1.39—2.75)。(3)极端气温对高龄组(≥65岁)脑卒中死亡的促进风险更高,对低龄组没有明显的促进或抑制效应。极端高温对男性热累积促进效应更强,极端低温对女性累积促进效应更强。

     

  • 图 1  不同滞后时间极端高温对不同群组 (a. 全体,b1. ≥65岁,b2. <65岁,c1. 男,c2. 女) 脑卒中死亡的单日相对危险度

    Figure 1.  Three dimensional diagram of single-day relative risk value of extreme high temperature on stroke death in different lag time for different groups (a. all,b1. ≥65,b2. <65,c1. male,c2. famale)

    图 2  滞后0—14 d极端高温对不同群组 (a. 全体,b1. ≥65岁,b2. <65岁,c1. 男,c2. 女) 脑卒中死亡的累积相对危险度 (阴影为95%置信区间)

    Figure 2.  Cumulative relative risk value of extreme high temperature on stroke death in lag time 0—14 d for different groups (a. all,b1. ≥65,b2. <65,c1. male,c2. famale;shaded:95%CI)

    图 3  不同滞后时间极端低温对不同群组 (a. 全体,b1. ≥65岁,b2. <65岁,c1. 男,c2. 女) 脑卒中死亡的单日相对危险度

    Figure 3.  Three dimensional diagram of single-day relative risk of extreme low temperature on stroke death in different lag time for different groups (a. all,b1. ≥65,b2. <65,c1. male,c2. famale)

    图 4  滞后0—21 d极端低温对不同群组 (a. 全体,b1. ≥65岁,b2. <65岁,c1. 男,c2. 女) 脑卒中死亡的累积相对危险度 (阴影为95%置信区间)

    Figure 4.  Cumulative relative risk of extreme low temperature on stroke death in lag time 0—21 d for different groups (a. all,b1. ≥65,b2. <65,c1. male,c2. famale;shaded:95%CI)

    表  1  2013—2019年宁波市气象要素、空气污染要素和脑卒中病例统计

    Table  1.   Descriptive statistics of meteorological factors,air pollution factors and stroke cases in Ningbo from 2013 to 2019

    指标平均值±标准差最小值25%分位数中位数75%分位数最大值
     极端高温(℃)22.42±8.96−2.5015.0523.3029.4042.10
     极端低温(℃)14.67±23.33−6.707.3015.3022.1029.40
     相对湿度(%)75.45±12.1628.0068.0076.0085.00100.00
     PM2.5(μg/m348.78±34.060.0027.0041.0060.00458.00
     日死亡人数(人)18.13±5.783.0014.0017.0022.0042.00
     日低龄组死亡人数(人)1.52±1.260.001.001.002.008.00
     日高龄组死亡人数(人)16.61±5.533.0013.0016.0020.0039.00
     日男性死亡人数(人)9.48±3.431.007.009.0012.0027.00
     日女性死亡人数(人)8.65±3.430.006.008.0011.0025.00
    下载: 导出CSV

    表  2  35—40℃不同群组在有效滞后天数内对脑卒中死亡的累积相对危险度及95%置信区间

    Table  2.   Cumulative relative risk and 95%CI of stroke death for different groups at 35—40℃ within effective lag days

    温度群组累积滞后天数
    00—1 d0—2 d0—3 d
    35℃全部人群1.09(1.06—1.12)1.15(1.10—1.21)1.19(1.13—1.26)1.21(1.14—1.28)
    ≥65岁1.09(1.06—1.12)1.15(1.10—1.20)1.19(1.12—1.26)1.20(1.13—1.28)
    <65岁1.01(0.84—1.20)*1.01(0.75—1.34)*1.00(0.71—1.41)*0.99(0.69—1.43)*
    1.12(1.07—1.17)1.21(1.12—1.30)1.26(1.15—1.37)1.27(1.15—1.40)*
    1.05(1.02—1.09)1.09(1.03—1.16)1.12(1.04—1.20)1.13(1.05—1.22)*
    36℃全部人群1.10(1.06—1.14)1.18(1.11—1.24)1.22(1.15—1.31)1.24(1.16—1.34)
    ≥65岁1.10(1.06—1.14)1.18(1.11—1.24)1.23(1.15—1.31)1.24(1.16—1.34)
    <65岁1.01(0.86—1.18)*1.01(0.78—1.30)*1.00(0.74—1.36)*0.99(0.72—1.37)*
    1.14(1.08—1.19)1.24(1.15—1.34)1.30(1.18—1.43)1.32(1.19—1.46)*
    1.06(1.02—1.11)1.11(1.03—1.19)1.14(1.05—1.24)1.16(1.06—1.27)*
    37℃全部人群1.11(1.07—1.16)1.20(1.13—1.28)1.26(1.17—1.36)1.28(1.19—1.41)
    ≥65岁1.12(1.07—1.16)1.21(1.13—1.29)1.26(1.17—1.37)1.28(1.18—1.40)
    <65岁1.01(0.88—1.15)*1.01(0.81—1.25)*1.00(0.77—1.30)*1.00(0.76—1.31)*
    1.16(1.09—1.22)1.28(1.17—1.40)1.35(1.21—1.50)1.37(1.22—1.54)*
    1.07(1.02—1.13)1.13(1.03—1.23)1.16(1.05—1.29)1.18(1.06—1.32)*
    38℃全部人群1.13(1.08—1.18)1.23(1.14—1.33)1.30(1.18—1.42)1.32(1.20—1.46)
    ≥65岁1.13(1.08—1.19)1.24(1.14—1.34)1.30(1.19—1.43)1.33(1.21—1.47)
    <65岁1.00(0.90—1.12)*1.01(0.84—1.20)*1.00(0.81—1.24)*1.00(0.80—1.25)*
    1.18(1.10—1.25)1.31(1.19—1.46)1.40(1.24—1.58)1.43(1.25—1.63)*
    1.08(1.01—1.15)1.15(1.03—1.27)1.19(1.05—1.34)1.21(1.06—1.38)*
    39℃全部人群1.14(1.09—1.21)1.26(1.16—1.37)1.33(1.20—1.48)1.37(1.22—1.53)
    ≥65岁1.15(1.09—1.22)1.27(1.16—1.39)1.35(1.21—1.50)1.38(1.23—1.55)*
    <65岁1.00(0.92—1.09)*1.00(0.88—1.15)*1.00(0.85—1.18)*1.00(0.84—1.18)*
    1.20(1.11—1.29)1.35(1.21—1.52)1.45(1.26—1.67)1.49(1.28—1.73)*
    1.09(1.01—1.18)1.16(1.03—1.31)1.21(1.05—1.40)1.24(1.06—1.44)*
    40℃全部人群1.16(1.09—1.24)1.29(1.17—1.43)1.38(1.22—1.55)1.41(1.25—1.60)
    ≥65岁1.17(1.10—1.25)1.30(1.18—1.45)1.39(1.23—1.59)1.43(1.25—1.64)*
    <65岁1.00(0.95—1.06)*1.00(0.92—1.10)*1.00(0.90—1.12)*1.00(0.89—1.12)*
    1.22(1.12—1.20)1.40(1.22—1.59)1.51(1.29—1.77)1.55(1.31—1.84)*
    1.10(1.01—1.20)1.18(1.03—1.36)1.24(1.05—1.46)1.27(1.06—1.51)*
     注:*表示不具有统计学意义。
    下载: 导出CSV

    表  3  −4—0℃不同群组在有效滞后天数内对脑卒中死亡的累积相对危险度及95%置信区间

    Table  3.   Cumulative relative risk values and 95%CI of stroke death for different groups at −4—0℃ within effective lag days

    温度群组累积滞后天数
    00—5 d0—10 d0—15 d
    0℃全部人群0.99(0.94—1.04)*1.10(0.91—1.33)1.44(1.12—1.85)1.74(1.28—2.37)*
    ≥65岁0.99(0.94—1.04)*1.08(0.89—1.32)1.42(1.10—1.85)1.74(1.26—2.40)
    <65岁1.03(0.98—1.07)*1.11(0.91—1.34)*1.13(0.86—1.47)*1.14(0.81—1.61)*
    1.07(1.02—1.11)1.36(1.14—1.62)1.54(1.21—1.97)*1.61(1.18—2.20)*
    0.97(0.91—1.04)*1.05(0.81—1.36)1.42(1.01—2.01)1.74(1.14—2.66)
    −1℃全部人群1.00(0.95—1.05)*1.13(0.94—1.37)1.48(1.15—1.91)1.79(1.29—2.49)
    ≥65岁0.99(0.94—1.04)*1.11(0.91—1.36)1.46(1.12—1.91)1.79(1.29—2.49)*
    <65岁1.03(0.97—1.09)*1.12(0.89—1.42)*1.15(0.84—1.58)*1.17(0.78—1.76)*
    1.07(1.03—1.12)1.40(1.16—1.68)1.59(1.24—2.04)*1.66(1.20—2.29)*
    0.98(0.92—1.05)*1.07(0.82—1.39)1.46(1.03—2.07)1.78(1.15—2.75)*
    −2℃全部人群1.00(0.96—1.05)*1.16(0.96—1.41)1.52(1.17—1.97)1.84(1.33—2.54)
    ≥65岁1.00(0.95—1.05)*1.14(0.93—1.40)1.50(1.15—1.97)1.84(1.31—2.58)
    <65岁1.03(0.97—1.10)*1.14(0.87—1.50)*1.18(0.81—1.71)*1.20(0.75—1.93)*
    1.08(1.03—1.13)1.44(1.19—1.74)1.64(1.26—2.13)*1.71(1.23—2.39)*
    0.98(0.92—1.05)*1.09(0.83—1.42)1.49(1.04—2.13)1.82(1.17—2.85)*
    −3℃全部人群1.01(0.96—1.06)*1.19(0.98—1.46)1.56(1.20—2.04)1.90(1.36—2.64)
    ≥65岁1.01(0.96—1.06)*1.17(0.95—1.44)1.55(1.17—2.04)1.89(1.34—2.68)
    <65岁1.04(0.96—1.12)*1.16(0.85—1.60)*1.20(0.75—2.02)*1.23(0.71—2.14)*
    1.09(1.04—1.15)1.48(1.22—1.81)1.75(1.31—2.32)*1.77(1.25—2.51)*
    0.99(0.92—1.06)*1.11(0.85—1.46)1.52(1.06—2.20)1.87(1.19—2.96)*
    −4℃全部人群1.02(0.97—1.07)*1.23(1.00—1.50)1.61(1.22—2.12)1.95(1.39—2.75)
    ≥65岁1.01(0.96—1.07)*1.21(0.98—1.49)1.59(1.19—2.11)1.95(1.36—2.79)
    <65岁1.04(0.95—1.14)*1.18(0.82—1.70)*1.23(0.75—2.02)*1.27(0.68—2.37)*
    1.10(1.04—1.16)1.53(1.24—1.89)1.75(1.31—2.32)*1.83(1.27—2.63)*
    0.99(0.93—1.06)*1.14(0.86—1.51)1.56(1.07—2.28)1.92(1.20—3.08)*
     注:*表示不具有统计学意义。
    下载: 导出CSV
  • [1] 陈丽菁,方红,田秀红等. 2015. 2005—2014年上海市闵行区脑卒中死亡流行病学特征及时间趋势分析. 健康教育与健康促进,10(6):444-447

    Chen L J,Fang H,Tian X H,et al. 2015. Epidemiological characteristics and temporal trends of stroke mortality in Minhang district of Shanghai,2005-2014. Health Educ Health Promot,10(6):444-447 (in Chinese)
    [2] 陈亦晨,孙良红,李小攀等. 2019. 2002—2017年上海市浦东新区居民脑卒中死亡特征及减寿率分析. 中国全科医学,22(8):966-972

    Chen Y C,Sun L H,Li X P,et al. 2019. Mortality and years of life lost due to stroke among residents in Pudong new area of Shanghai between 2002 and 2017. Chinese Gen Pract,22(8):966-972 (in Chinese)
    [3] 陈亦晨,陈华,曲晓滨等. 2022. 日均气温对浦东新区居民脑卒中死亡影响的时间序列研究. 中国全科医学,25(15):1838-1844

    Chen Y C,Chen H,Qu X B,et al. 2022. Impact of average daily temperature on stroke mortality in Pudong New Area:A time-series analysis. Chinese Gen Pract,25(15):1838-1844 (in Chinese)
    [4] 陈月珍,林艺兰. 2016. 厦门市居民脑卒中死亡的流行病学研究. 疾病监测与控制,10(7):519-520

    Chen Y Z,Lin Y L. 2016. Epidemiologic study on mortality due to stroke in residents in Xiamen. J Dis Monitor Control,10(7):519-520 (in Chinese)
    [5] 何晓定,周迎春. 2020. 气象因素对上海市长宁区脑卒中死亡的影响. 实用预防医学,27(3):274-277

    He X D,Zhou Y C. 2020. Impact of meteorological factors on stroke death in Changning district,Shanghai. Pract Prev Med,27(3):274-277 (in Chinese)
    [6] 李娟,黄东辉,王冲等. 2017. 2013年辽宁省彰武和凤城地区脑卒中死亡特点分析. 中国慢性病预防与控制,25(2):147-151

    Li J,Huang D H,Wang C,et al. 2017. Analysis of death characteristics of stroke in Zhangwu and Fengcheng areas of Liaoning province from 2017 to 2013. Chinese J Chron Dis,25(2):147-151 (in Chinese)
    [7] 李诺,杨静,冯学泉等. 2017. 中国脑卒中死亡风险30年研究概述. 中华行为医学与脑科学杂志,26(8):765-768 doi: 10.3760/cma.j.issn.1674-6554.2017.08.020

    Li N,Yang J,Feng X Q,et al. 2017. A summary of 30 years' research on risk factors of stroke mortality in China. Chinese J Behav Med Brain Sci,26(8):765-768 (in Chinese) doi: 10.3760/cma.j.issn.1674-6554.2017.08.020
    [8] 王陇德. 2015. 中国脑卒中防治报告—2015. 北京:中国协和医科大学出版社,5-6,68-69

    Wang L D. 2015. Report on the Chinese Stroke Prevention. Beijing:Peking Union Medical College Press,5-6,68-69 (in Chinese)
    [9] 王通,王丽楠,彭艳英等. 2019. 2016—2018年上海某远郊社区脑卒中高危人群筛查结果分析. 上海医药,40(22):52-55

    Wang T,Wang L N,Peng Y Y,et al. 2019. Analysis of screening results of stroke risk population in a remote suburban community of Shanghai from 2016 to 2018. Shanghai Med Pharm J,40(22):52-55 (in Chinese)
    [10] 王拥军,李子孝,谷鸿秋等. 2020. 中国卒中报告2019(中文版)(1). 中国卒中杂志,15(10):1037-1043 doi: 10.3969/j.issn.1673-5765.2020.10.001

    Wang Y J,Li Z X,Gu H Q,et al. 2020. China stroke statistics 2019(1). Chinese J Stroke,15(10):1037-1043 (in Chinese) doi: 10.3969/j.issn.1673-5765.2020.10.001
    [11] 吴凯,张云权,邓芷晴等. 2016. 武汉江岸区2003—2014年脑卒中死亡分析. 浙江预防医学,28(2):168-170

    Wu K,Zhang Y Q,Deng Z Q,et al. 2016. Analysis of stroke deaths in Wuhan Jiang'an district from 2003 to 2014. Zhejiang Prev Med,28(2):168-170 (in Chinese)
    [12] 徐颖,陈远银,于绍轶等. 2017. 2012—2015年烟台市脑卒中流行病学特征分析. 现代预防医学,44(2):200-204

    Xu Y,Chen Y Y,Yu S Y,et al. 2017. Analysis of the epidemiological characteristics of stroke in Yantai city between 2012 and 2015. Mod Prev Med,44(2):200-204 (in Chinese)
    [13] 徐哲永,马浩,高大伟等. 2021. 1973—2019年浙江省极端最高气温时空演变特征研究. 科技通报,37(7):13-21

    Xu Z Y,Ma H,Gao D W,et al. 2021. Spatiotemporal evolution analysis on extreme daily maximum temperature over Zhejiang province during 1973-2019. Bull Sci Technol,37(7):13-21 (in Chinese)
    [14] 宇传华,罗丽莎,李梅等. 2016. 从全球视角看中国脑卒中疾病负担的严峻性. 公共卫生与预防医学,27(1):1-5

    Yu C H,Luo L S,Li M,et al. 2016. From the global views to understand the seriousness of the burden of stroke in China. J Public Health Prev Med,27(1):1-5 (in Chinese)
    [15] Anderson B G,Bell M L. 2009. Weather-related mortality:How heat,cold,and heat waves affect mortality in the United States. Epidemiology,20(2):205-213 doi: 10.1097/EDE.0b013e318190ee08
    [16] Bai L,Ding G Q,Gu S H,et al. 2014. The effects of summer temperature and heat waves on heat-related illness in a coastal city of China,2011-2013. Environ Res,132:212-219 doi: 10.1016/j.envres.2014.04.002
    [17] Basu R. 2009. High ambient temperature and mortality:A review of epidemiologic studies from 2001 to 2008. Environ Health,8:40 doi: 10.1186/1476-069X-8-40
    [18] Bhaskaran K,Hajat S,Haines A,et al. 2009. Effects of ambient temperature on the incidence of myocardial infarction. Heart,95(21):1760-1769 doi: 10.1136/hrt.2009.175000
    [19] Breitner S,Wolf K,Peters A,et al. 2014. Short-term effects of air temperature on cause-specific cardiovascular mortality in Bavaria,Germany. Heart,100(16):1272-1280 doi: 10.1136/heartjnl-2014-305578
    [20] Chen R,Wang C,Meng X,et al. 2013. Both low and high temperature may increase the risk of stroke mortality. Neurology,81(12):1064-1070 doi: 10.1212/WNL.0b013e3182a4a43c
    [21] Chen R J,Yin P,Wang L J,et al. 2018. Association between ambient temperature and mortality risk and burden:Time series study in 272 main Chinese cities. BMJ,363:k4306
    [22] Dilaveris P,Synetos A,Giannopoulos G,et al. 2006. Climate impacts on myocardial infarction deaths in the Athens Territory:The CLIMATE study. Heart,92(12):1747-1751 doi: 10.1136/hrt.2006.091884
    [23] Gasparrini A,Armstrong B,Kenward M G. 2010. Distributed lag non-linear models. Stat Med,29(21):2224-2234 doi: 10.1002/sim.3940
    [24] Gasparrini A,Armstrong B. 2011. The impact of heat waves on mortality. Epidemiology,22(1):68-73 doi: 10.1097/EDE.0b013e3181fdcd99
    [25] Gasparrini A,Guo Y M,Hashizume M,et al. 2015. Mortality risk attributable to high and low ambient temperature:A multicountry observational study. Lancet,386(9991):369-375 doi: 10.1016/S0140-6736(14)62114-0
    [26] Guo Y M,Barnett A G,Yu W W,et al. 2011. A large change in temperature between neighbouring days increases the risk of mortality. PLoS One,6(2):e16511 doi: 10.1371/journal.pone.0016511
    [27] Guo Y M,Jiang F,Peng L,et al. 2012a. The association between cold spells and pediatric outpatient visits for asthma in Shanghai,China. PLoS One,7(7):e42232 doi: 10.1371/journal.pone.0042232
    [28] Guo Y M,Punnasiri K,Tong S L. 2012b. Effects of temperature on mortality in Chiang Mai city,Thailand:A time series study. Environ Health,11(1):36 doi: 10.1186/1476-069X-11-36
    [29] Guo Y M,Li S S,Zhang Y S,et al. 2013. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality:Epidemiological evidence from China. Heart,2013,99(3):195-203
    [30] Hajat S,Armstrong B G,Gouveia N,et al. 2005. Mortality displacement of heat-related deaths:A comparison of Delhi,São Paulo,and London. Epidemiology,16(5):613-620 doi: 10.1097/01.ede.0000164559.41092.2a
    [31] Huang Z J,Lin H L,Liu Y N,et al. 2015. Individual-level and community-level effect modifiers of the temperature-mortality relationship in 66 Chinese communities. BMJ Open,5(9):e009172 doi: 10.1136/bmjopen-2015-009172
    [32] IPCC. 2021. Summary for policymakers∥IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
    [33] Lavados P M,Olavarría V V,Hoffmeister L. 2018. Ambient temperature and stroke risk. Stroke,49(1):255-261 doi: 10.1161/STROKEAHA.117.017838
    [34] Lawlor D A,Smith G D,Mitchell R,et al. 2004. Temperature at birth,coronary heart disease,and insulin resistance:Cross sectional analyses of the British women's heart and health study. Heart,90(4):381-388 doi: 10.1136/hrt.2002.009548
    [35] Lowe D,Ebi K L,Forsberg B. 2011. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health,8(12):4623-4648 doi: 10.3390/ijerph8124623
    [36] McMichael A J,Wilkinson P,Kovats R S,et al. 2008. International study of temperature,heat and urban mortality:The 'ISOTHURM' project. Int J Epidemiol,37(5):1121-1131 doi: 10.1093/ije/dyn086
    [37] Revich B,Shaposhnikov D. 2008. Temperature-induced excess mortality in Moscow,Russia. Int J Biometeorol,52(5):367-374 doi: 10.1007/s00484-007-0131-6
    [38] Roger V L,Go A S,Lloyd-Jones D M,et al. 2012. Executive summary:Heart disease and stroke statistics–2012 update:A report from the American Heart Association:American heart association statistics committee and stroke statistics subcommittee. Circulation,125(1):188-197 doi: 10.1161/CIR.0b013e3182456d46
    [39] Sun Z Q,Zheng L Q,Detrano R,et al. 2013. An epidemiological survey of stroke among rural Chinese adults results from the Liaoning province. Int J Stroke,8(8):701-706 doi: 10.1111/j.1747-4949.2012.00897.x
    [40] Vardoulakis S,Dear K,Hajat S,et al. 2014. Comparative assessment of the effects of climate change on heat- and cold- related mortality in the United Kingdom and Australia. Environ Health Perspect,122(12):1285-1292 doi: 10.1289/ehp.1307524
    [41] Wang Z K,Hu S B,Sang S P,et al. 2017. Age-period-cohort analysis of stroke mortality in China:Data from the global burden of disease study 2013. Stroke,48(2):271-275 doi: 10.1161/STROKEAHA.116.015031
    [42] Yang J,Yin P,Zhou M G,et al. 2016. The burden of stroke mortality attributable to cold and hot ambient temperatures:Epidemiological evidence from China. Environ Int,92-93:232-238 doi: 10.1016/j.envint.2016.04.001
    [43] Zhang Y S,Li S S,Pan X C,et al. 2014. The effects of ambient temperature on cerebrovascular mortality:An epidemiologic study in four climatic zones in China. Environ Health,13(1):24 doi: 10.1186/1476-069X-13-24
    [44] Zhou L,Chen K,Chen X D,et al. 2017. Heat and mortality for ischemic and hemorrhagic stroke in 12 cities of Jiangsu province,China. Sci Total Environ,601-602:271-277 doi: 10.1016/j.scitotenv.2017.05.169
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  28
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-03-20
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回