Mortality burden and related health economic assessment of non-optimal ambient temperature in China
-
摘要: 气候变化对人群健康的影响不断加剧,亟待评价不适环境温度对健康的不良影响,量化与温度相关的死亡负担和对应的健康经济损失。本研究基于2013年1月1日至2015年12月31日中国272个主要城市的气温和人口死亡数据,采用时间序列方法建立温度与死亡的暴露-反应关系。同时,收集2020年中国大陆364个城市的气象、社会经济和人口数据,进一步估算31个省、自治区、直辖市低温和高温暴露的归因死亡人数和经济损失。结果表明,环境温度与死亡的暴露-反应关系近似呈反“J”型,环境低温和高温暴露均可引起死亡风险升高。2020年环境低温和高温暴露分别导致中国大陆84.24(95%置信区间(95%CI):65.93—102.20)万例和23.58(95%CI:14.69—32.17)万例死亡;相应健康的经济损失分别为17011.08(95%CI:13353.51—20597.72)亿元和5097.35(95%CI:3179.66—6945.93)亿元,共占国内生产总值(GDP)的2.18%。不适环境温度暴露已对中国造成了较大的死亡负担和健康经济损失。未来还需加强行动应对气候变化和不适环境温度的健康威胁,因地制宜采取适应措施保护人群健康。Abstract: With the increasing impact of climate change on public health, there is an urgent need to evaluate the detrimental effect of non-optimal ambient temperature on health and quantify the temperature-related mortality and corresponding economic losses. Based on the national database of weather conditions and mortality records in 272 main cities in China from 1 January 2013 to 31 December 2015, time-series analyses are conducted to estimate the exposure-response association between temperature and mortality. Besides, meteorological, socioeconomic, and demographic data for cities across China are collected to quantify the attributable deaths and corresponding economic losses due to low and high temperatures in 31 provinces, autonomous regions and municipalities of China. The exposure-response curve for the association between ambient temperature and mortality is J-shaped, with increased mortality risks for both low and high temperatures. As estimated, 842.4 (95%CI: 659.3—1022.0) thousand and 235.8 (95%CI: 146.9—321.7) thousand deaths are attributable to low and high temperatures in 2020 in China, respectively. The corresponding economic losses are 1701.11 (95%CI: 1335.35—2059.77) billion and 509.74 (95%CI: 317.97—694.59) billion Chinese yuan, respectively. The proportion of the overall economic loss to the gross domestic product (GDP) is 2.18%. Non-optimal ambient temperature exposure has led to substantial mortality and economic loss in China. It is necessary to strengthen actions to deal with the health threats of climate change and non-optimal ambient temperature, and local adaptation measures should be taken to protect public health in the future.
-
Key words:
- Ambient temperature /
- Mortality burden /
- Economic assessment
-
表 1 2020年中国31个省、自治区及直辖市的基本信息
Table 1. Basic information of 31 provinces,autonomous regions,and municipalities of China in 2020
变量 人口
(万)死亡率(‰) 人均年收入
(万元)生产总值
(亿元)年均温度
(℃)统计生命价值(万元) 安徽 6104.8 6.0 2.8 38680.6 16.7 180.5 北京 2189.0 5.5 6.9 36102.6 13.8 446.0 重庆 3208.9 7.6 3.1 25002.8 19.2 198.0 福建 4161.4 6.1 3.7 43903.9 21.3 238.9 甘肃 2500.5 6.8 2.0 9016.7 8.7 130.6 广东 12623.6 4.5 4.1 110760.9 23.3 263.5 广西 5018.7 6.1 2.5 22156.7 21.9 157.8 贵州 3857.9 7.0 2.2 17826.6 16.2 140.0 海南 1011.7 6.1 2.8 5532.4 25.3 179.2 河北 7463.8 6.1 2.7 36206.9 12.8 174.3 河南 9941.2 6.8 2.5 54997.1 15.6 159.4 黑龙江 3170.9 6.7 2.5 13698.5 4.3 159.9 湖北 5744.8 7.1 2.8 43443.5 16.7 179.1 湖南 6645.3 7.3 2.9 41781.5 17.7 188.7 吉林 2399.2 6.9 2.6 12311.3 6.5 165.4 江苏 8477.3 7.0 4.3 102719.0 16.8 278.7 江西 4519.4 6.0 2.8 25691.5 18.7 179.9 辽宁 4255.5 7.3 3.3 25115.0 10.1 210.3 内蒙古 2402.8 5.7 3.1 17359.8 6.3 202.3 宁夏 720.9 5.7 2.6 3920.6 9.9 165.3 青海 592.8 6.1 2.4 3005.9 4.9 154.4 山东 10164.5 7.5 3.3 73129.0 13.8 211.2 山西 3490.4 5.9 2.5 17651.9 11.3 161.9 陕西 3954.7 6.3 2.6 26181.9 13.0 168.4 上海 2488.2 5.5 7.2 38700.6 17.8 463.9 四川 8370.7 7.1 2.7 48598.8 15.8 170.3 天津 1386.8 5.3 4.4 14083.7 13.8 281.7 西藏 365.6 4.5 2.2 1902.7 7.6 139.7 新疆 2590.5 4.5 2.4 13797.6 9.0 153.2 云南 4722.2 6.2 2.3 24521.9 16.5 149.6 浙江 6468.3 5.5 5.2 64613.3 18.5 336.5 全国 141212.0 7.1 3.2 1015986.2 14.8 206.7 表 2 中国不适环境温度相关的相对危险度
Table 2. Relative risks associated with non-optimal ambient temperatures in China
变量 城市数量(个) MMT (℃) 极端低温 (℃) 极端高温 (℃) 相对危险度(均值及95%置信区间) 极端低温 极端高温 全国 272 22.8 −1.4 29.0 1.67 (1.56—1.79) 1.16 (1.11—1.20) 北方 119 19.6 −9.2 27.3 1.29 (1.19—1.40) 1.11 (1.07—1.16) 南方 153 23.7 4.7 30.3 1.40 (1.32—1.49) 1.19 (1.11—1.27) 注:MMT,最低死亡率温度;极端低温为温度分布2.5%分位数;极端高温为温度分布97.5%分位数。 表 3 2020年全国31个省、自治区、直辖市的不适温度相关的死亡归因数 (均值及95%置信区间)
Table 3. Attributable number of deaths (mean value and the 95% confidential intervals) due to non-optimal ambient temperature in 31 provinces,autonomous regions and municipalities of China in 2020
变量 归因死亡数(万人) 归因分数(%) 低温 高温 低温 高温 汇总 安徽 3.63 (2.91—4.34) 1.04 (0.64—1.42) 9.84 2.81 12.65 北京 0.82 (0.56—1.07) 0.35 (0.21—0.49) 6.81 2.94 9.75 重庆 2.45 (2.02—2.87) 0.87 (0.56—1.17) 10.09 3.58 13.67 福建 1.75 (1.43—2.06) 1.04 (0.66—1.41) 6.88 4.10 10.98 甘肃 1.67 (1.19—2.15) 0.13 (0.08—0.18) 9.91 0.78 10.69 广东 2.74 (2.24—3.24) 3.02 (1.91—4.08) 4.87 5.36 10.23 广西 1.93 (1.59—2.28) 1.39 (0.88—1.89) 6.27 4.52 10.79 贵州 3.87 (3.22—4.50) 0.22 (0.14—0.30) 14.43 0.82 15.25 海南 0.12 (0.10—0.15) 0.40 (0.25—0.54) 1.97 6.44 8.41 河北 3.23 (2.23—4.23) 1.07 (0.65—1.48) 7.07 2.35 9.42 河南 4.06 (2.85—5.27) 2.15 (1.31—2.96) 5.96 3.16 9.12 黑龙江 2.58 (1.82—3.30) 0.20 (0.12—0.27) 12.06 0.92 12.98 湖北 4.99 (4.14—5.80) 1.07 (0.67—1.45) 12.26 2.62 14.88 湖南 5.52 (4.59—6.43) 1.60 (1.01—2.16) 11.42 3.30 14.72 吉林 1.82 (1.28—2.34) 0.21 (0.13—0.29) 11.00 1.27 12.27 江苏 6.02 (4.88—7.12) 1.58 (0.99—2.16) 10.08 2.66 12.74 江西 2.88 (2.39—3.36) 1.05 (0.67—1.41) 10.58 3.83 14.41 辽宁 2.70 (1.88—3.51) 0.52 (0.32—0.73) 8.77 1.70 10.47 内蒙古 1.50 (1.05—1.94) 0.14 (0.08—0.19) 11.05 1.00 12.05 宁夏 0.36 (0.25—0.47) 0.06 (0.03—0.08) 8.72 1.34 10.06 青海 0.42 (0.29—0.55) <0.01 11.72 0.02 11.74 山东 4.87 (3.34—6.41) 1.84 (1.11—2.54) 6.39 2.41 8.80 山西 1.93 (1.42—2.43) 0.32 (0.19—0.44) 9.47 1.56 11.03 陕西 3.77 (3.07—4.45) 0.28 (0.17—0.39) 15.20 1.13 16.33 上海 1.57 (1.30—1.83) 0.38 (0.24—0.51) 11.47 2.77 14.24 四川 7.48 (6.22—8.71) 1.00 (0.62—1.36) 12.61 1.68 14.29 天津 0.50 (0.34—0.65) 0.21 (0.13—0.29) 6.78 2.84 9.62 西藏 0.18 (0.12—0.23) <0.01 10.92 0.19 11.11 新疆 1.07 (0.75—1.38) 0.19 (0.12—0.26) 9.29 1.66 10.95 云南 3.78 (3.12—4.42) 0.09 (0.06—0.12) 12.90 0.30 13.20 浙江 4.02 (3.33—4.69) 1.19 (0.75—1.60) 11.25 3.33 14.58 全国 84.24 (65.93—102.20) 23.58 (14.69—32.17) 8.36 2.34 10.70 北方 31.69 (22.37—40.89) 8.44 (5.11—11.67) 8.04 2.14 10.18 南方 52.55 (43.55—61.31) 15.14 (9.57—20.50) 10.50 3.02 13.52 表 4 2020年全国31个省、自治区、直辖市不适温度相关的健康经济学损失 (均值及95%置信区间) 及其占GDP的比例
Table 4. Health economic loss (mean value and the 95% confidential intervals) and its proportion of local GDP due to non-optimal ambient temperature in 31 provinces,autonomous regions and municipalities of China in 2020
变量 健康经济损失(亿元) GDP比重(%) 低温 高温 低温 高温 汇总 安徽 655.17 (525.16—782.63) 186.93 (115.88—255.54) 1.69 0.48 2.17 北京 365.21 (251.66—478.19) 157.44 (95.66—217.01) 1.01 0.44 1.45 重庆 485.37 (400.49—568.59) 172.35 (109.95—231.46) 1.94 0.69 2.63 福建 417.19 (341.79—492.17) 248.69 (157.24—336.60) 0.95 0.57 1.52 甘肃 218.53 (155.38—280.80) 17.17 (10.34—23.94) 2.42 0.19 2.61 广东 722.47 (590.24—854.76) 794.62 (502.46—1075.39) 0.65 0.72 1.37 广西 304.90 (250.36—358.92) 219.78 (138.83—297.71) 1.38 0.99 2.37 贵州 541.49 (450.21—629.79) 30.78 (19.12—42.37) 3.04 0.17 3.21 海南 21.78 (17.62—26.03) 71.30 (45.10—96.46) 0.39 1.29 1.68 河北 563.05 (388.44—736.48) 186.75 (113.06—258.32) 1.56 0.52 2.08 河南 646.19 (454.66—839.09) 342.17 (208.45—471.01) 1.17 0.62 1.79 黑龙江 412.26 (290.72—528.21) 31.47 (18.91—43.86) 3.01 0.23 3.24 湖北 893.03 (741.70—1039.37) 190.96 (120.27—259.37) 2.06 0.44 2.50 湖南 1042.28 (865.44—1213.75) 301.63 (191.34—407.02) 2.49 0.72 3.21 吉林 301.10 (211.25—387.59) 34.77 (20.90—48.43) 2.45 0.28 2.73 江苏 1677.22 (1361.11—1985.60) 441.62 (275.99—600.97) 1.63 0.43 2.06 江西 518.71 (430.06—604.96) 188.07 (119.71—252.96) 2.02 0.73 2.75 辽宁 568.79 (395.32—738.74) 110.05 (66.33—152.87) 2.26 0.44 2.70 内蒙古 304.01 (213.12—391.68) 27.59 (16.57—38.47) 1.75 0.16 1.91 宁夏 59.10 (40.93—77.03) 9.11 (5.48—12.68) 1.51 0.23 1.74 青海 65.24 (45.16—85.06) 0.08 (0.05—0.12) 2.17 <0.01 2.17 山东 1029.06 (705.85—1353.60) 388.57 (235.33—537.30) 1.41 0.53 1.94 山西 313.03 (230.34—394.24) 51.46 (30.97—71.59) 1.77 0.29 2.06 陕西 635.71 (517.19—749.19) 47.07 (28.61—65.20) 2.43 0.18 2.61 上海 728.41 (604.45—848.73) 175.73 (111.39—237.37) 1.88 0.45 2.33 四川 1275.01 (1059.05—1484.46) 169.60 (105.97—232.23) 2.62 0.35 2.97 天津 140.46 (96.72—184.06) 58.74 (35.67—81.00) 1.00 0.42 1.42 西藏 24.88 (17.18—32.54) 0.44 (0.28—0.60) 1.31 0.02 1.33 新疆 164.07 (114.68—212.00) 29.34 (17.78—40.55) 1.19 0.21 1.40 云南 565.03 (466.24—662.05) 13.30 (8.26—18.30) 2.30 0.05 2.35 浙江 1352.33 (1120.96—1577.42) 399.78 (253.76—539.22) 2.09 0.62 2.71 全国 17011.08 (13353.51—20597.72) 5097.35 (3179.66—6945.93) 1.67 0.50 2.17 北方 5965.68 (4199.65—7710.45) 1685.66 (1021.42—2329.79) 0.59 0.17 0.76 南方 11045.40 (9153.85—12887.27) 3411.69 (2158.24—4616.14) 1.09 0.34 1.42 -
[1] Adélaïde L,Chanel O,Pascal M. 2022. Health effects from heat waves in France:An economic evaluation. Eur J Health Econ,23(1):119-131 doi: 10.1007/s10198-021-01357-2 [2] Ananthapavan J,Moodie M,Milat A J,et al. 2021. Systematic review to update 'value of a statistical life' estimates for Australia. Int J Environ Res Public Health,18(11):6168 doi: 10.3390/ijerph18116168 [3] Cai D, Shi S, Jiang S, et al. 2021. Estimation of the cost-effective threshold of a quality-adjusted life year in China based on the value of statistical life. Eur J Health Econ, DOI: 10.1007/s10198-021-01384-2 [4] Cai W J,Zhang C,Zhang S H,et al. 2021. The 2021 China report of the Lancet Countdown on health and climate change:Seizing the window of opportunity. Lancet Public Health,6(12):e932-e947 doi: 10.1016/S2468-2667(21)00209-7 [5] Chen R J, Yin P, Wang L J, et al. 2018. Association between ambient temperature and mortality risk and burden: Time series study in 272 main Chinese cities. BMJ, 363: k4306 [6] Ebi K L,Capon A,Berry P,et al. 2021. Hot weather and heat extremes:Health risks. Lancet,398(10301):698-708 doi: 10.1016/S0140-6736(21)01208-3 [7] Gasparrini A,Guo Y M,Hashizume M,et al. 2015. Mortality risk attributable to high and low ambient temperature:A multicountry observational study. Lancet,386(9991):369-375 doi: 10.1016/S0140-6736(14)62114-0 [8] Guo Y M,Gasparrini A,Armstrong B,et al. 2014. Global variation in the effects of ambient temperature on mortality:A systematic evaluation. Epidemiology,25(6):781-789 doi: 10.1097/EDE.0000000000000165 [9] Hao Y,Zhao M Y,Lu Z N. 2019. What is the health cost of haze pollution? Evidence from China. Int J Health Plann Manage,34(4):1290-1303 doi: 10.1002/hpm.2791 [10] Hoffmann S,Krupnick A,Qin P. 2017. Building a set of internationally comparable value of statistical life studies:Estimates of Chinese willingness to pay to reduce mortality risk. J Benefit-Cost Anal,8(2):251-289 doi: 10.1017/bca.2017.16 [11] Keller E,Newman J E,Ortmann A,et al. 2021. How much is a human life worth? A systematic review. Value Health,24(10):1531-1541 doi: 10.1016/j.jval.2021.04.003 [12] Liu Y,Saha S,Hoppe B O,et al. 2019. Degrees and dollars — health costs associated with suboptimal ambient temperature exposure. Sci Total Environ,678:702-711 doi: 10.1016/j.scitotenv.2019.04.398 [13] Romanello M,McGushin A,Di Napoli C,et al. 2021. The 2021 report of the Lancet Countdown on health and climate change:Code red for a healthy future. Lancet,398(10311):1619-1662 doi: 10.1016/S0140-6736(21)01787-6 [14] Song X P,Wang S G,Hu Y L,et al. 2017. Impact of ambient temperature on morbidity and mortality:An overview of reviews. Sci Total Environ,586:241-254 doi: 10.1016/j.scitotenv.2017.01.212 [15] Taylor N A S. 2014. Human heat adaptation. Compr Physiol,4(1):325-365 [16] Xia Y,Li Y,Guan D B,et al. 2018. Assessment of the economic impacts of heat waves:A case study of Nanjing,China. J Clean Prod,171:811-819 doi: 10.1016/j.jclepro.2017.10.069 [17] Yang Q Q,Huang X,Tang Q H. 2019. The footprint of urban heat island effect in 302 Chinese cities:Temporal trends and associated factors. Sci Total Environ,655:652-662 doi: 10.1016/j.scitotenv.2018.11.171 [18] Zhao Q,Guo Y M,Ye T T,et al. 2021. Global,regional,and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019:A three-stage modelling study. Lancet Planet Health,5(7):e415-e425 doi: 10.1016/S2542-5196(21)00081-4 -