Effects of short-term exposure to PM10 on biomarkers of diabetes
-
摘要: 为探讨PM10对糖尿病发病相关生物标志物的效应,以“金昌队列”为平台,采用随机抽样方法在基线人群中选择2型糖尿病、糖尿病前期和血糖正常组共420人,用近邻模型完成个体PM10暴露评估。运用酶联免疫吸附法对炎症反应指标(IL-6、VCAM-1)、氧化损伤指标(8-iso-PGF2α)、胰岛功能指标(INS)进行检测,运用多重线性回归模型从以上3方面评价PM10的效应。结果显示:糖尿病前期人群中,滞后6 d时PM10浓度每升高10 μg/m3,IL-6升高0.45%(95%置信区间(95%CI):0.19%—0.88%),当天的PM10与VCAM-1关联最明显(增幅:1.16%(95%CI:0.43%—2.28%));糖尿病人群中,滞后6 d时PM10与IL-6的关联最显著(增幅:1.52%,(95%CI:0.51%—2.53%)),滞后3 d时8-iso-PGF2α升高2.01%(95%CI:0.29%—3.73%);累积滞后7 d时PM10与HOMA-β关联最明显(降幅:4.63%(95%CI:−8.00%—−1.13%))。文中结果表明大气PM10短期暴露可导致人群出现不同程度的炎症反应、氧化损伤及胰岛β细胞功能障碍。Abstract: This study explores the effects of short-term exposure to PM10 on related biomarkers of diabetes. Based on the platform of "Jinchang Cohort", a total of 420 patients with type 2 diabetes, pre-diabetes and normal blood glucose are randomly selected. The nearest neighbor model is used to estimate individual exposure levels. IL-6, VCAM-1, 8-iso-PGF2α and INS are detected by ELISA. A multiple linear regression model is conducted to evaluate the effects of PM10 on the biomarkers. For every 10 μg/m3 increase in PM10 concentration, it is found that IL-6 increases by 0.45% (95%CI: 0.19%—0.88%) at lag 6 d, and PM10 is most significantly associated with VCAM-1 at lag 0 d (increase: 1.16%, 95%CI: (0.43%—2.28%)) in the prediabetic group. PM10 is most significantly associated with IL-6 (increase: 1.52%, (95%CI: 0.51%—2.53%)) at lag 6 d, while 8-iso-PGF2α increases by 2.01% (95%CI: 0.29%—3.73%) at lag 3 d, and the relationship between PM10 and HOMA-β is most significant at lag 0—7 d (decrease: 4.63%, (95%CI: −8.00%—−1.13%)) for type 2 diabetes patients. Short-term exposure to PM10 can lead to inflammation, oxidative damage and islet β cell dysfunction.
-
Key words:
- PM10 /
- Type 2 diabetes /
- Inflammation /
- Oxidative damage /
- Islet β cell function
-
表 1 不同糖代谢水平人群的基本特征
Table 1. General characteristics of population with different blood glucose levels
变量 血糖正常(n(%)) 糖尿病前期(n(%)) 糖尿病(n(%)) P 性别 男 90(64.29%) 120(85.71%) 116(82.86%) <0.001 女 50(35.71%) 20(14.29%) 24(17.14%) 年龄(岁) <60 124(88.57%) 118(84.29%) 95(67.86%) <0.001 ≥60 16(11.43%) 22(15.71%) 45(32.14%) BMI(kg/m2) <24.0 85(60.72%) 67(47.86%) 48(34.29%) <0.001 24.0—27.9 47(33.57%) 52(37.14%) 65(46.43%) ≥28.0 8(5.71%) 21(15.00%) 27(19.28%) 家庭人均月收入(元) <2000 79(56.43%) 80(57.15%) 79(56.43%) 0.974 2000—4999 60(42.86%) 59(42.14%) 59(42.14%) ≥5000 1(0.71%) 1(0.71%) 2(1.43%) 文化水平 初中及以下 50(35.71%) 52(37.14%) 73(52.14%) 0.015 高中/中专 49(35.00%) 57(40.71%) 36(25.71%) 本科及以上 41(29.29%) 31(22.15%) 31(22.15%) 吸烟 否 68(48.57%) 60(42.86%) 57(40.71%) 0.392 是 72(51.43%) 80(57.14%) 83(59.29%) 饮酒 否 110(78.57%) 85(60.71%) 92(65.71%) 0.004 是 30(21.43%) 55(39.29%) 48(34.29%) 高血压 否 107(76.43%) 75(53.57%) 68(48.57%) <0.001 是 33(23.57%) 65(46.43%) 72(51.43%) 糖尿病家族史 否 118(84.29%) 120(85.71%) 104(74.29%) 0.028 是 22(15.71%) 20(14.29%) 36(25.71%) 表 2 不同糖代谢状态人群的生物标志物水平
Table 2. Biomarker levels of population with different blood glucose states
生物标志物 血糖正常($ \overline{x} $±s) 糖尿病前期($ \overline{x} $±s) 糖尿病($ \overline{x} $±s) P IL-6(ng/L) 43.57±15.55 52.18±13.88 43.18±13.42 <0.001 VCAM-1(μg/L) 821.21±527.99 1058.44±410.16 720.89±403.09 <0.001 8-iso-PGF2α(pg/L) 4667.89±1496.67 4608.17±1872.76 3131.12±1965.84 <0.001 INS(μU/ml) 32.53±14.56 40.64±12.07 25.79±13.27 <0.001 HOMA-IR 7.08±3.20 10.76±3.34 10.43±6.67 <0.001 HOMA-β 5.13±3.16 3.35±1.03 1.21±0.95 <0.001 表 3 2009—2013年金昌市主要空气污染物与气象要素分布特征
Table 3. Distribution characteristics of air pollutants and meteorological factors in Jinchang city from 2009 to 2013
变 量 $ \overline{x} $ 最小值 25%分位数 中位数 75%分位数 最大值 IQR PM10(μg/m3) 92.29 17.00 59.00 76.00 100.00 1102.00 41.00 SO2(μg/m3) 65.55 3.00 40.00 57.00 81.00 290.00 41.00 NO2(μg/m3) 24.41 4.00 18.00 24.00 29.00 70.00 11.00 气温(℃) 9.54 −19.00 −0.70 10.95 19.70 32.00 20.40 相对湿度(%) 40.87 7.00 27.00 38.00 52.00 98.00 25.00 注:IQR为四分位数间距。 表 4 PM10浓度每升高10 μg/m3与生物标志物变化的关系
Table 4. Association between per 10 μg/m3 increment in PM10 concentration and biomarkers
滞后期 血糖正常 糖尿病前期 糖尿病 血糖正常 糖尿病前期 糖尿病 IL-6 [%(95%CI)] VCAM-1 [%(95%CI)] Lag0 0.46(−0.51—1.43) 0.72(−0.31—1.48) 0.02(−0.97—1.01) 0.23(−1.38—1.84) 1.16(0.43—2.28)* 1.03(−2.27—4.32) Lag1 0.06(−0.54—0.65) 0.03(−0.80—0.86) −0.71(−1.88—0.46) −0.02(0.85—0.96) 1.05(−0.14—2.25) 1.86(−2.15—5.88) Lag2 −0.58(−1.67—0.51) −0.03(−0.67—0.61) −0.16(−1.58—1.26) −0.16(−1.97—1.65) 0.37(−0.55—1.30) 2.14(−2.38—6.67) Lag3 −0.11(−1.33—1.12) 0.34(−0.36—1.05) 1.68(−0.46—3.82) 1.15(−0.82—3.13) 0.81(−0.19—1.82) 3.45(−3.55—10.46) Lag4 0.08(−0.45—0.61) 0.09(−0.33—0.52) −0.88(−2.43—0.66) 0.47(−0.42—1.36) 0.25(−0.35—0.84) 3.38(−1.65—8.40) Lag5 0.20(−0.92—1.32) 0.27(−0.07—0.62) 1.35(0.31—2.38)* 0.55(−1.32—2.43) 0.54(0.05—1.03)* 0.14(−3.13—3.41) Lag6 0.36(−0.32—1.04) 0.45(0.19—0.88)* 1.52(0.51—2.53)* −0.26(−1.40—0.88) 0.55(−0.09—1.18) 0.82(−2.64—4.28) Lag7 −0.14(−0.83—0.54) −0.19(−0.67—0.30) −0.26(−1.15—0.64) 0.61(−0.49—1.71) −0.01(−0.75—0.73) 2.26(−0.70—5.21) Lag07 −0.49(−2.35—1.41) 0.63(−0.29—1.55) −2.53(−5.14—0.16) 0.21(−2.93—3.44) 1.32(−0.01—2.65) 6.28(−2.66—16.04) 滞后期 8-iso-PGF2α [%(95%CI)] INS[%(95%CI)] Lag0 0.89(−1.42—3.21) 0.12(−0.58—0.82) 0.80(−0.04—1.64) 0.23(−1.49—1.95) 0.27(−0.60—1.14) −0.54(−1.64—0.57) Lag1 0.49(−0.92—1.90) 0.14(−0.60—0.88) −0.28(−1.29—0.72) −0.12(−1.15—0.91) 0.23(−0.69—1.14) −0.29(−1.57—1.00) Lag2 0.85(−1.78—3.48) −0.12(−0.69—0.45) −0.66(−1.80—0.49) −1.54(−3.46—0.37) 0.23(−0.47—0.92) −1.36(−2.87—0.16) Lag3 2.17(−0.68—5.03) −0.18(−0.81—0.45) 2.01(0.29—3.73)* −0.98(−3.21—1.24) 0.37(−0.39—1.13) 1.57(−0.81—3.94) Lag4 0.43(−0.85—1.71) −0.19(−0.57—0.19) 0.15(−1.11—1.41) 0.37(−0.59—1.32) 0.23(−0.26—0.71) −1.04(−2.73—0.64) Lag5 0.72(−2.01—3.46) 0.06(−0.26—0.39) −0.63(−1.43—0.16) −0.09(−2.11—1.94) 0.25(−0.16—0.65) −1.02(−2.09—0.05) Lag6 −0.41(−2.07—1.25) 0.04(−0.38—0.45) −0.69(−1.53—0.14) 0.44(−0.80—1.69) 0.06(−0.44—0.57) −1.05(−2.13—0.04) Lag7 1.38(−0.24—3.01) −0.17(−0.63—0.29) −0.61(−1.35—0.13) −0.46(−1.65—0.74) −0.27(−0.83—0.29) 0.036(−0.94—1.01) Lag07 2.12(−2.42—6.88) 0.05(−0.77—0.87) 6.28(−2.66—16.04) −0.73(−4.06—2.71) 0.54(−0.49—1.58) −2.53(−5.31—0.33) 滞后期 HOMA-IR [%(95%CI)] HOMA-β[%(95%CI)] Lag0 −0.49(−2.51—1.52) 0.20(−0.70—1.10) −0.45(−1.57—0.67) 1.37(−0.93—3.68) 0.43(−0.47—1.34) −0.82(−2.22—0.57) Lag1 −0.19(−1.44—1.06) 0.21(−0.73—1.15) −0.11(−1.41—1.20) 0.06(−1.29—1.41) 0.28(−0.69—1.25) −0.95(−2.57—0.67) Lag2 −1.80(−4.06—0.45) 0.33(−0.38—1.04) −1.14(−2.68—0.40) −1.01(−3.62—1.59) −0.02(−0.77—0.73) −2.15(−4.02— −0.28)* Lag3 −1.38(−3.97—1.22) 0.41(−0.36—1.18) 1.98(−0.40—4.37) −0.38(−3.37—2.62) 0.27(−0.55—1.08) −0.99(−3.00—2.98) Lag4 0.22(−0.91—1.36) 0.25(−0.25—0.75) −0.66(−2.36—1.04) 0.60(−0.64—1.84) 0.17(−0.34—0.67) −2.37(−4.45— −0.28)* Lag5 −0.69(−3.13—1.74) 0.25(−0.16—0.66) −1.01(−2.09—0.07) 0.87(−1.78—3.52) 0.17(−0.34—0.67) −0.94(−2.30—0.42) Lag6 0.86(−0.62—2.35) 0.05(−0.47—0.57) −1.06(−2.15—0.03) −0.01(−1.60—1.58) 0.09(−0.45—0.63) −0.89(−2.28—0.49) Lag7 −0.46(−1.90—0.98) −0.32(−0.90—0.25) 0.16(−0.82—1.13) −0.52(−2.09—1.06) −0.14(−0.74—0.45) −0.51(−1.73—0.71) Lag07 −1.42(−5.35—2.68) 0.53(−0.53—1.60) −1.95(−4.80—0.98) 0.48(−3.95—5.11) 0.55(−0.53—1.64) −4.63(-8.00— −1.13)* 注:*表示P<0.05。 -
[1] 丁杰萍,张亚群,周静等. 2018. 甘肃省主要城市环境空气质量变化趋势分析研究. 甘肃科技,34(14):1-4,128 doi: 10.3969/j.issn.1000-0952.2018.14.002Ding J P,Zhang Y Q,Zhou J,et al. 2018. Trend analysis of environmental air quality in major cities in Gansu province. Gansu Sci Technol,34(14):1-4,128 (in Chinese) doi: 10.3969/j.issn.1000-0952.2018.14.002 [2] 施淼,刘超斌,陈晓秋等. 2013. 大气可吸入颗粒物暴露致胎儿畸形的病例对照研究. 中华围产医学杂志,16(4):200-205 doi: 10.3760/cma.j.issn.1007-9408.2013.04.004Shi M,Liu C B,Chen X Q,et al. 2013. Fetal congenital deformity resulting from ambient inhalable particulate matters:A case-control study. Chinese J Perinat Med,16(4):200-205 (in Chinese) doi: 10.3760/cma.j.issn.1007-9408.2013.04.004 [3] 王文路. 2016. 甘肃省城市环境空气质量2005—2014年(10年)变化趋势研究[D]. 兰州: 兰州大学. Wang W L. 2016. The change trend of urban ambient air quality from 2005 to 2014 (10 years) in Gansu province [D]. Lanzhou: Lanzhou University (in Chinese) [4] Alderete T L,Habre R,Toledo-Corral C M,et al. 2017. Longitudinal associations between ambient air pollution with insulin sensitivity,β-Cell function,and adiposity in Los Angeles Latino children. Diabetes,66(7):1789-1796 doi: 10.2337/db16-1416 [5] American Diabetes Association. 2019. 2. Classification and diagnosis of diabetes:Standards of medical care in diabetes-2019. Diabetes Care,42(S1):S13-S28 [6] Araujo J A,Barajas B,Kleinman M,et al. 2008. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res,102(5):589-596 doi: 10.1161/CIRCRESAHA.107.164970 [7] Bertazzi P A,Cantone L,Pignatelli P,et al. 2014. Does enhancement of oxidative stress markers mediate health effects of ambient air particles?. Antioxid Redox Signal,21(1):46-51 doi: 10.1089/ars.2013.5694 [8] Bourdrel T,Bind M A,Béjot Y,et al. 2017. Cardiovascular effects of air pollution. Arch Cardiovasc Dis,110(11):634-642 doi: 10.1016/j.acvd.2017.05.003 [9] Brook R D,Rajagopalan S,Pope Ⅲ C A,et al. 2010. Particulate matter air pollution and cardiovascular disease:An update to the scientific statement from the American Heart Association. Circulation,121(21):2331-2378 doi: 10.1161/CIR.0b013e3181dbece1 [10] Chen Z H,Salam M T,Toledo-Corral C,et al. 2016. Ambient air pollutants have adverse effects on insulin and glucose homeostasis in Mexican Americans. Diabetes Care,39(4):547-554 doi: 10.2337/dc15-1795 [11] Drews G,Krippeit-Drews P,Düfer M. 2010. Oxidative stress and beta-cell dysfunction. Pflugers Arch-Eur J Physiol,460(4):703-718 doi: 10.1007/s00424-010-0862-9 [12] Esposito K,Petrizzo M,Maiorino M I,et al. 2016. Particulate matter pollutants and risk of type 2 diabetes:A time for concern?. Endocrine,51(1):32-37 doi: 10.1007/s12020-015-0638-2 [13] Eze I C,Imboden M,Kumar A,et al. 2016. Air pollution and diabetes association:Modification by type 2 diabetes genetic risk score. Environ Int,94:263-271 doi: 10.1016/j.envint.2016.04.032 [14] Fu H Y,Liu X,Li W,et al. 2020. PM2.5 exposure induces inflammatory response in macrophages via the TLR4/COX-2/NF-κB pathway. Inflammation,43(5):1948-1958 doi: 10.1007/s10753-020-01269-y [15] Guo P,Feng W R,Zheng M R,et al. 2018. Short-term associations of ambient air pollution and cause-specific emergency department visits in Guangzhou,China. Sci Total Environ,613-614:306-313 doi: 10.1016/j.scitotenv.2017.09.102 [16] Haberzettl P,O'Toole T E,Bhatnagar A,et al. 2016. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ Health Perspect,124(12):1830-1839 doi: 10.1289/EHP212 [17] Hou J,Tu R O,Dong Y H,et al. 2021. Associations of residing greenness and long-term exposure to air pollution with glucose homeostasis markers. Sci Total Environ,776:145834 doi: 10.1016/j.scitotenv.2021.145834 [18] IDF. 2021. IDF Diabetes Atlas: Diabetes around the world in 2021[EB/OL]. International Diabetes Federation. http: //www.diabetesatlas.org/, 2021-12-6/2021-12-15 [19] Khafaie M A,Salvi S S,Ojha A,et al. 2013. Systemic inflammation (C-reactive protein) in type 2 diabetic patients is associated with ambient air pollution in Pune city,India. Diabetes Care,36(3):625-630 doi: 10.2337/dc12-0388 [20] Kumari M,Head J,Marmot M. 2004. Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall Ⅱ study. Arch Intern Med,164(17):1873-1880 doi: 10.1001/archinte.164.17.1873 [21] Liu C Q,Ying Z K,Harkema J,et al. 2013. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol,41(2):361-373 doi: 10.1177/0192623312464531 [22] Liu P,Wang X N,Fan J Y,et al. 2016. Effects of air pollution on hospital emergency room visits for respiratory diseases:Urban-suburban differences in eastern China. Int J Environ Res Public Health,13(3):341 doi: 10.3390/ijerph13030341 [23] Lorenzo C,Wagenknecht L E,D'Agostino R B,et al. 2010. Insulin resistance,β-cell dysfunction,and conversion to type 2 diabetes in a multiethnic population:The insulin resistance atherosclerosis study. Diabetes Care,33(1):67-72 doi: 10.2337/dc09-1115 [24] O'Neill M S,Veves A,Sarnat J A,et al. 2007. Air pollution and inflammation in type 2 diabetes:A mechanism for susceptibility. Occup Environ Med,64(6):373-379 [25] Pope Ⅲ C A,Bhatnagar A,McCracken J P,et al. 2016. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res,119(11):1204-1214 doi: 10.1161/CIRCRESAHA.116.309279 [26] Rajagopalan S,Brook R D. 2012. Air pollution and type 2 diabetes:Mechanistic insights. Diabetes,61(12):3037-3045 doi: 10.2337/db12-0190 [27] Rao X Q,Montresor-Lopez J,Puett R,et al. 2015. Ambient air pollution:An emerging risk factor for diabetes mellitus. Curr Diab Rep,15(6):33 doi: 10.1007/s11892-015-0603-8 [28] Riggs D W,Zafar N,Krishnasamy S,et al. 2020. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environ Res,180:108890 doi: 10.1016/j.envres.2019.108890 [29] Roberts Ⅱ L J,Morrow J D. 2000. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biol Med,28(4):505-513 doi: 10.1016/S0891-5849(99)00264-6 [30] Roper C,Chubb L G,Cambal L,et al. 2017. Association of IL-6 with PM2.5 components:Importance of characterizing filter-based PM2.5 following extraction. Water Air Soil Pollut,228:43 doi: 10.1007/s11270-016-3219-y [31] Simó-Servat O,Simó R,Hernández C. 2016. Circulating biomarkers of diabetic retinopathy:An overview based on physiopathology. J Diabetes Res,2016:5263798 [32] Thiering E,Markevych I,Brüske I,et al. 2016. Associations of residential long-term air pollution exposures and satellite-derived greenness with insulin resistance in German adolescents. Environ Health Perspect,124(8):1291-1298 doi: 10.1289/ehp.1509967 [33] Verdile G,Keane K N,Cruzat V F,et al. 2015. Inflammation and oxidative stress:The molecular connectivity between insulin resistance,obesity,and Alzheimer's disease. Mediators Inflamm,2015:105828 [34] Wang X,Bao W,Liu J,et al. 2013. Inflammatory markers and risk of type 2 diabetes:A systematic review and meta-analysis. Diabetes Care,36(1):166-175 doi: 10.2337/dc12-0702 [35] Wolf K,Popp A,Schneider A,et al. 2016. Association between long-term exposure to air pollution and biomarkers related to insulin resistance,subclinical inflammation,and Adipokines. Diabetes,65(11):3314-3326 doi: 10.2337/db15-1567 [36] World Health Organization. 2006. Air quality guidelines of WHO on particulate matters, ozone, nitrogen dioxide and sulfur dioxide—Global Update 2005[EB/OL]. https://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_chi.pdf, 2006-06-02/2022-4-21 [37] Xu X H,Hu H,Ha S D,et al. 2014. Ambient air pollution and hypertensive disorder of pregnancy. J Epidemiol Community Health,68(1):13-20 doi: 10.1136/jech-2013-202902 [38] Yang B Y,Qian Z M,Li S S,et al. 2018. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China:A cross-sectional study with findings from the 33 Communities Chinese Health Study. Lancet Planet Health,2(2):e64-e73 doi: 10.1016/S2542-5196(18)30001-9 [39] Zhang S Q,Mwiberi S,Pickford R,et al. 2021. Longitudinal associations between ambient air pollution and insulin sensitivity:Results from the KORA cohort study. Lancet Planet Health,5(1):e39-e49 doi: 10.1016/S2542-5196(20)30275-8 [40] Zheng Z,Xu X H,Zhang X B,et al. 2013. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol,58(1):148-154 doi: 10.1016/j.jhep.2012.08.009 [41] Zhu X L,Chen C,Zhang B,et al. 2021. Acute effects of personal exposure to fine particulate matter on salivary and urinary biomarkers of inflammation and oxidative stress in healthy adults. Chemosphere,272:129906 doi: 10.1016/j.chemosphere.2021.129906 -