留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PM10短期暴露对糖尿病发病相关生物标志物的影响

贺颖倩 靳亚飞 王敏珍 郑山 聂永红 白亚娜

贺颖倩,靳亚飞,王敏珍,郑山,聂永红,白亚娜. 2022. PM10短期暴露对糖尿病发病相关生物标志物的影响. 气象学报,80(3):482-489 doi: 10.11676/qxxb2022.036
引用本文: 贺颖倩,靳亚飞,王敏珍,郑山,聂永红,白亚娜. 2022. PM10短期暴露对糖尿病发病相关生物标志物的影响. 气象学报,80(3):482-489 doi: 10.11676/qxxb2022.036
He Yingqian, Jin Yafei, Wang Minzhen, Zheng Shan, Nie Yonghong, Bai Yana. 2022. Effects of short-term exposure to PM10 on biomarkers of diabetes. Acta Meteorologica Sinica, 80(3):482-489 doi: 10.11676/qxxb2022.036
Citation: He Yingqian, Jin Yafei, Wang Minzhen, Zheng Shan, Nie Yonghong, Bai Yana. 2022. Effects of short-term exposure to PM10 on biomarkers of diabetes. Acta Meteorologica Sinica, 80(3):482-489 doi: 10.11676/qxxb2022.036

PM10短期暴露对糖尿病发病相关生物标志物的影响

doi: 10.11676/qxxb2022.036
基金项目: 国家自然科学基金项目(41705122、41505095)
详细信息
    作者简介:

    贺颖倩,主要从事环境流行病学研究。E-mail:3531456493@qq.com

    通讯作者:

    王敏珍,主要从事环境流行病学和慢性病流行病学研究。E-mail:wangmzh@lzu.edu.cn

  • 中图分类号: P49 R122.7

Effects of short-term exposure to PM10 on biomarkers of diabetes

  • 摘要: 为探讨PM10对糖尿病发病相关生物标志物的效应,以“金昌队列”为平台,采用随机抽样方法在基线人群中选择2型糖尿病、糖尿病前期和血糖正常组共420人,用近邻模型完成个体PM10暴露评估。运用酶联免疫吸附法对炎症反应指标(IL-6、VCAM-1)、氧化损伤指标(8-iso-PGF2α)、胰岛功能指标(INS)进行检测,运用多重线性回归模型从以上3方面评价PM10的效应。结果显示:糖尿病前期人群中,滞后6 d时PM10浓度每升高10 μg/m3,IL-6升高0.45%(95%置信区间(95%CI):0.19%—0.88%),当天的PM10与VCAM-1关联最明显(增幅:1.16%(95%CI:0.43%—2.28%));糖尿病人群中,滞后6 d时PM10与IL-6的关联最显著(增幅:1.52%,(95%CI:0.51%—2.53%)),滞后3 d时8-iso-PGF2α升高2.01%(95%CI:0.29%—3.73%);累积滞后7 d时PM10与HOMA-β关联最明显(降幅:4.63%(95%CI:−8.00%—−1.13%))。文中结果表明大气PM10短期暴露可导致人群出现不同程度的炎症反应、氧化损伤及胰岛β细胞功能障碍。

     

  • 图 1  金昌市4个环境污染物监测站点和研究对象家庭住址地理分布

    Figure 1.  Geographical distribution of 4 environmental pollutants monitoring stations and the residential addresses of research subjects in Jinchang city

    表  1  不同糖代谢水平人群的基本特征

    Table  1.   General characteristics of population with different blood glucose levels

    变量血糖正常(n(%))糖尿病前期(n(%))糖尿病(n(%))P
    性别 男90(64.29%)120(85.71%)116(82.86%)<0.001
     女50(35.71%)20(14.29%)24(17.14%)
    年龄(岁) <60124(88.57%)118(84.29%)95(67.86%)<0.001
     ≥6016(11.43%)22(15.71%)45(32.14%)
    BMI(kg/m2 <24.085(60.72%)67(47.86%)48(34.29%)<0.001
     24.0—27.947(33.57%)52(37.14%)65(46.43%)
     ≥28.08(5.71%)21(15.00%)27(19.28%)
    家庭人均月收入(元) <200079(56.43%)80(57.15%)79(56.43%)0.974
     2000—499960(42.86%)59(42.14%)59(42.14%)
     ≥50001(0.71%)1(0.71%)2(1.43%)
    文化水平 初中及以下50(35.71%)52(37.14%)73(52.14%)0.015
     高中/中专49(35.00%)57(40.71%)36(25.71%)
     本科及以上41(29.29%)31(22.15%)31(22.15%)
    吸烟 否68(48.57%)60(42.86%)57(40.71%)0.392
     是72(51.43%)80(57.14%)83(59.29%)
    饮酒 否110(78.57%)85(60.71%)92(65.71%)0.004
     是30(21.43%)55(39.29%)48(34.29%)
    高血压 否107(76.43%)75(53.57%)68(48.57%)<0.001
     是33(23.57%)65(46.43%)72(51.43%)
    糖尿病家族史 否118(84.29%)120(85.71%)104(74.29%)0.028
     是22(15.71%)20(14.29%)36(25.71%)
    下载: 导出CSV

    表  2  不同糖代谢状态人群的生物标志物水平

    Table  2.   Biomarker levels of population with different blood glucose states

    生物标志物血糖正常($ \overline{x} $±s糖尿病前期($ \overline{x} $±s糖尿病($ \overline{x} $±sP
    IL-6(ng/L)43.57±15.5552.18±13.8843.18±13.42<0.001
    VCAM-1(μg/L)821.21±527.991058.44±410.16720.89±403.09<0.001
    8-iso-PGF2α(pg/L)4667.89±1496.674608.17±1872.763131.12±1965.84<0.001
    INS(μU/ml)32.53±14.5640.64±12.0725.79±13.27<0.001
    HOMA-IR7.08±3.2010.76±3.3410.43±6.67<0.001
    HOMA-β5.13±3.163.35±1.031.21±0.95<0.001
    下载: 导出CSV

    表  3  2009—2013年金昌市主要空气污染物与气象要素分布特征

    Table  3.   Distribution characteristics of air pollutants and meteorological factors in Jinchang city from 2009 to 2013

    变 量$ \overline{x} $最小值25%分位数中位数75%分位数最大值IQR
    PM10(μg/m392.2917.0059.0076.00100.001102.0041.00
    SO2(μg/m365.553.0040.0057.0081.00290.0041.00
    NO2(μg/m324.414.0018.0024.0029.0070.0011.00
    气温(℃)9.54−19.00−0.7010.9519.7032.0020.40
    相对湿度(%)40.877.0027.0038.0052.0098.0025.00
    注:IQR为四分位数间距。
    下载: 导出CSV

    表  4  PM10浓度每升高10 μg/m3与生物标志物变化的关系

    Table  4.   Association between per 10 μg/m3 increment in PM10 concentration and biomarkers

    滞后期血糖正常糖尿病前期糖尿病血糖正常糖尿病前期糖尿病
    IL-6 [%(95%CI)]VCAM-1 [%(95%CI)]
    Lag00.46(−0.51—1.43)0.72(−0.31—1.48)0.02(−0.97—1.01)0.23(−1.38—1.84)1.16(0.43—2.28)*1.03(−2.27—4.32)
    Lag10.06(−0.54—0.65)0.03(−0.80—0.86)−0.71(−1.88—0.46)−0.02(0.85—0.96)1.05(−0.14—2.25)1.86(−2.15—5.88)
    Lag2−0.58(−1.67—0.51)−0.03(−0.67—0.61)−0.16(−1.58—1.26)−0.16(−1.97—1.65)0.37(−0.55—1.30)2.14(−2.38—6.67)
    Lag3−0.11(−1.33—1.12)0.34(−0.36—1.05)1.68(−0.46—3.82)1.15(−0.82—3.13)0.81(−0.19—1.82)3.45(−3.55—10.46)
    Lag40.08(−0.45—0.61)0.09(−0.33—0.52)−0.88(−2.43—0.66)0.47(−0.42—1.36)0.25(−0.35—0.84)3.38(−1.65—8.40)
    Lag50.20(−0.92—1.32)0.27(−0.07—0.62)1.35(0.31—2.38)*0.55(−1.32—2.43)0.54(0.05—1.03)*0.14(−3.13—3.41)
    Lag60.36(−0.32—1.04)0.45(0.19—0.88)*1.52(0.51—2.53)*−0.26(−1.40—0.88)0.55(−0.09—1.18)0.82(−2.64—4.28)
    Lag7−0.14(−0.83—0.54)−0.19(−0.67—0.30)−0.26(−1.15—0.64)0.61(−0.49—1.71)−0.01(−0.75—0.73)2.26(−0.70—5.21)
    Lag07−0.49(−2.35—1.41)0.63(−0.29—1.55)−2.53(−5.14—0.16)0.21(−2.93—3.44)1.32(−0.01—2.65)6.28(−2.66—16.04)
    滞后期8-iso-PGF2α [%(95%CI)]INS[%(95%CI)]
    Lag00.89(−1.42—3.21)0.12(−0.58—0.82)0.80(−0.04—1.64)0.23(−1.49—1.95)0.27(−0.60—1.14)−0.54(−1.64—0.57)
    Lag10.49(−0.92—1.90)0.14(−0.60—0.88)−0.28(−1.29—0.72)−0.12(−1.15—0.91)0.23(−0.69—1.14)−0.29(−1.57—1.00)
    Lag20.85(−1.78—3.48)−0.12(−0.69—0.45)−0.66(−1.80—0.49)−1.54(−3.46—0.37)0.23(−0.47—0.92)−1.36(−2.87—0.16)
    Lag32.17(−0.68—5.03)−0.18(−0.81—0.45)2.01(0.29—3.73)*−0.98(−3.21—1.24)0.37(−0.39—1.13)1.57(−0.81—3.94)
    Lag40.43(−0.85—1.71)−0.19(−0.57—0.19)0.15(−1.11—1.41)0.37(−0.59—1.32)0.23(−0.26—0.71)−1.04(−2.73—0.64)
    Lag50.72(−2.01—3.46)0.06(−0.26—0.39)−0.63(−1.43—0.16)−0.09(−2.11—1.94)0.25(−0.16—0.65)−1.02(−2.09—0.05)
    Lag6−0.41(−2.07—1.25)0.04(−0.38—0.45)−0.69(−1.53—0.14)0.44(−0.80—1.69)0.06(−0.44—0.57)−1.05(−2.13—0.04)
    Lag71.38(−0.24—3.01)−0.17(−0.63—0.29)−0.61(−1.35—0.13)−0.46(−1.65—0.74)−0.27(−0.83—0.29)0.036(−0.94—1.01)
    Lag072.12(−2.42—6.88)0.05(−0.77—0.87)6.28(−2.66—16.04)−0.73(−4.06—2.71)0.54(−0.49—1.58)−2.53(−5.31—0.33)
    滞后期HOMA-IR [%(95%CI)]HOMA-β[%(95%CI)]
    Lag0−0.49(−2.51—1.52)0.20(−0.70—1.10)−0.45(−1.57—0.67)1.37(−0.93—3.68)0.43(−0.47—1.34)−0.82(−2.22—0.57)
    Lag1−0.19(−1.44—1.06)0.21(−0.73—1.15)−0.11(−1.41—1.20)0.06(−1.29—1.41)0.28(−0.69—1.25)−0.95(−2.57—0.67)
    Lag2−1.80(−4.06—0.45)0.33(−0.38—1.04)−1.14(−2.68—0.40)−1.01(−3.62—1.59)−0.02(−0.77—0.73)−2.15(−4.02— −0.28)*
    Lag3−1.38(−3.97—1.22)0.41(−0.36—1.18)1.98(−0.40—4.37)−0.38(−3.37—2.62)0.27(−0.55—1.08)−0.99(−3.00—2.98)
    Lag40.22(−0.91—1.36)0.25(−0.25—0.75)−0.66(−2.36—1.04)0.60(−0.64—1.84)0.17(−0.34—0.67)−2.37(−4.45— −0.28)*
    Lag5−0.69(−3.13—1.74)0.25(−0.16—0.66)−1.01(−2.09—0.07)0.87(−1.78—3.52)0.17(−0.34—0.67)−0.94(−2.30—0.42)
    Lag60.86(−0.62—2.35)0.05(−0.47—0.57)−1.06(−2.15—0.03)−0.01(−1.60—1.58)0.09(−0.45—0.63)−0.89(−2.28—0.49)
    Lag7−0.46(−1.90—0.98)−0.32(−0.90—0.25)0.16(−0.82—1.13)−0.52(−2.09—1.06)−0.14(−0.74—0.45)−0.51(−1.73—0.71)
    Lag07−1.42(−5.35—2.68)0.53(−0.53—1.60)−1.95(−4.80—0.98)0.48(−3.95—5.11)0.55(−0.53—1.64)−4.63(-8.00— −1.13)*
    注:*表示P<0.05。
    下载: 导出CSV
  • [1] 丁杰萍,张亚群,周静等. 2018. 甘肃省主要城市环境空气质量变化趋势分析研究. 甘肃科技,34(14):1-4,128 doi: 10.3969/j.issn.1000-0952.2018.14.002

    Ding J P,Zhang Y Q,Zhou J,et al. 2018. Trend analysis of environmental air quality in major cities in Gansu province. Gansu Sci Technol,34(14):1-4,128 (in Chinese) doi: 10.3969/j.issn.1000-0952.2018.14.002
    [2] 施淼,刘超斌,陈晓秋等. 2013. 大气可吸入颗粒物暴露致胎儿畸形的病例对照研究. 中华围产医学杂志,16(4):200-205 doi: 10.3760/cma.j.issn.1007-9408.2013.04.004

    Shi M,Liu C B,Chen X Q,et al. 2013. Fetal congenital deformity resulting from ambient inhalable particulate matters:A case-control study. Chinese J Perinat Med,16(4):200-205 (in Chinese) doi: 10.3760/cma.j.issn.1007-9408.2013.04.004
    [3] 王文路. 2016. 甘肃省城市环境空气质量2005—2014年(10年)变化趋势研究[D]. 兰州: 兰州大学. Wang W L. 2016. The change trend of urban ambient air quality from 2005 to 2014 (10 years) in Gansu province [D]. Lanzhou: Lanzhou University (in Chinese)
    [4] Alderete T L,Habre R,Toledo-Corral C M,et al. 2017. Longitudinal associations between ambient air pollution with insulin sensitivity,β-Cell function,and adiposity in Los Angeles Latino children. Diabetes,66(7):1789-1796 doi: 10.2337/db16-1416
    [5] American Diabetes Association. 2019. 2. Classification and diagnosis of diabetes:Standards of medical care in diabetes-2019. Diabetes Care,42(S1):S13-S28
    [6] Araujo J A,Barajas B,Kleinman M,et al. 2008. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res,102(5):589-596 doi: 10.1161/CIRCRESAHA.107.164970
    [7] Bertazzi P A,Cantone L,Pignatelli P,et al. 2014. Does enhancement of oxidative stress markers mediate health effects of ambient air particles?. Antioxid Redox Signal,21(1):46-51 doi: 10.1089/ars.2013.5694
    [8] Bourdrel T,Bind M A,Béjot Y,et al. 2017. Cardiovascular effects of air pollution. Arch Cardiovasc Dis,110(11):634-642 doi: 10.1016/j.acvd.2017.05.003
    [9] Brook R D,Rajagopalan S,Pope Ⅲ C A,et al. 2010. Particulate matter air pollution and cardiovascular disease:An update to the scientific statement from the American Heart Association. Circulation,121(21):2331-2378 doi: 10.1161/CIR.0b013e3181dbece1
    [10] Chen Z H,Salam M T,Toledo-Corral C,et al. 2016. Ambient air pollutants have adverse effects on insulin and glucose homeostasis in Mexican Americans. Diabetes Care,39(4):547-554 doi: 10.2337/dc15-1795
    [11] Drews G,Krippeit-Drews P,Düfer M. 2010. Oxidative stress and beta-cell dysfunction. Pflugers Arch-Eur J Physiol,460(4):703-718 doi: 10.1007/s00424-010-0862-9
    [12] Esposito K,Petrizzo M,Maiorino M I,et al. 2016. Particulate matter pollutants and risk of type 2 diabetes:A time for concern?. Endocrine,51(1):32-37 doi: 10.1007/s12020-015-0638-2
    [13] Eze I C,Imboden M,Kumar A,et al. 2016. Air pollution and diabetes association:Modification by type 2 diabetes genetic risk score. Environ Int,94:263-271 doi: 10.1016/j.envint.2016.04.032
    [14] Fu H Y,Liu X,Li W,et al. 2020. PM2.5 exposure induces inflammatory response in macrophages via the TLR4/COX-2/NF-κB pathway. Inflammation,43(5):1948-1958 doi: 10.1007/s10753-020-01269-y
    [15] Guo P,Feng W R,Zheng M R,et al. 2018. Short-term associations of ambient air pollution and cause-specific emergency department visits in Guangzhou,China. Sci Total Environ,613-614:306-313 doi: 10.1016/j.scitotenv.2017.09.102
    [16] Haberzettl P,O'Toole T E,Bhatnagar A,et al. 2016. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ Health Perspect,124(12):1830-1839 doi: 10.1289/EHP212
    [17] Hou J,Tu R O,Dong Y H,et al. 2021. Associations of residing greenness and long-term exposure to air pollution with glucose homeostasis markers. Sci Total Environ,776:145834 doi: 10.1016/j.scitotenv.2021.145834
    [18] IDF. 2021. IDF Diabetes Atlas: Diabetes around the world in 2021[EB/OL]. International Diabetes Federation. http: //www.diabetesatlas.org/, 2021-12-6/2021-12-15
    [19] Khafaie M A,Salvi S S,Ojha A,et al. 2013. Systemic inflammation (C-reactive protein) in type 2 diabetic patients is associated with ambient air pollution in Pune city,India. Diabetes Care,36(3):625-630 doi: 10.2337/dc12-0388
    [20] Kumari M,Head J,Marmot M. 2004. Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall Ⅱ study. Arch Intern Med,164(17):1873-1880 doi: 10.1001/archinte.164.17.1873
    [21] Liu C Q,Ying Z K,Harkema J,et al. 2013. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol,41(2):361-373 doi: 10.1177/0192623312464531
    [22] Liu P,Wang X N,Fan J Y,et al. 2016. Effects of air pollution on hospital emergency room visits for respiratory diseases:Urban-suburban differences in eastern China. Int J Environ Res Public Health,13(3):341 doi: 10.3390/ijerph13030341
    [23] Lorenzo C,Wagenknecht L E,D'Agostino R B,et al. 2010. Insulin resistance,β-cell dysfunction,and conversion to type 2 diabetes in a multiethnic population:The insulin resistance atherosclerosis study. Diabetes Care,33(1):67-72 doi: 10.2337/dc09-1115
    [24] O'Neill M S,Veves A,Sarnat J A,et al. 2007. Air pollution and inflammation in type 2 diabetes:A mechanism for susceptibility. Occup Environ Med,64(6):373-379
    [25] Pope Ⅲ C A,Bhatnagar A,McCracken J P,et al. 2016. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res,119(11):1204-1214 doi: 10.1161/CIRCRESAHA.116.309279
    [26] Rajagopalan S,Brook R D. 2012. Air pollution and type 2 diabetes:Mechanistic insights. Diabetes,61(12):3037-3045 doi: 10.2337/db12-0190
    [27] Rao X Q,Montresor-Lopez J,Puett R,et al. 2015. Ambient air pollution:An emerging risk factor for diabetes mellitus. Curr Diab Rep,15(6):33 doi: 10.1007/s11892-015-0603-8
    [28] Riggs D W,Zafar N,Krishnasamy S,et al. 2020. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environ Res,180:108890 doi: 10.1016/j.envres.2019.108890
    [29] Roberts Ⅱ L J,Morrow J D. 2000. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biol Med,28(4):505-513 doi: 10.1016/S0891-5849(99)00264-6
    [30] Roper C,Chubb L G,Cambal L,et al. 2017. Association of IL-6 with PM2.5 components:Importance of characterizing filter-based PM2.5 following extraction. Water Air Soil Pollut,228:43 doi: 10.1007/s11270-016-3219-y
    [31] Simó-Servat O,Simó R,Hernández C. 2016. Circulating biomarkers of diabetic retinopathy:An overview based on physiopathology. J Diabetes Res,2016:5263798
    [32] Thiering E,Markevych I,Brüske I,et al. 2016. Associations of residential long-term air pollution exposures and satellite-derived greenness with insulin resistance in German adolescents. Environ Health Perspect,124(8):1291-1298 doi: 10.1289/ehp.1509967
    [33] Verdile G,Keane K N,Cruzat V F,et al. 2015. Inflammation and oxidative stress:The molecular connectivity between insulin resistance,obesity,and Alzheimer's disease. Mediators Inflamm,2015:105828
    [34] Wang X,Bao W,Liu J,et al. 2013. Inflammatory markers and risk of type 2 diabetes:A systematic review and meta-analysis. Diabetes Care,36(1):166-175 doi: 10.2337/dc12-0702
    [35] Wolf K,Popp A,Schneider A,et al. 2016. Association between long-term exposure to air pollution and biomarkers related to insulin resistance,subclinical inflammation,and Adipokines. Diabetes,65(11):3314-3326 doi: 10.2337/db15-1567
    [36] World Health Organization. 2006. Air quality guidelines of WHO on particulate matters, ozone, nitrogen dioxide and sulfur dioxide—Global Update 2005[EB/OL]. https://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_chi.pdf, 2006-06-02/2022-4-21
    [37] Xu X H,Hu H,Ha S D,et al. 2014. Ambient air pollution and hypertensive disorder of pregnancy. J Epidemiol Community Health,68(1):13-20 doi: 10.1136/jech-2013-202902
    [38] Yang B Y,Qian Z M,Li S S,et al. 2018. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China:A cross-sectional study with findings from the 33 Communities Chinese Health Study. Lancet Planet Health,2(2):e64-e73 doi: 10.1016/S2542-5196(18)30001-9
    [39] Zhang S Q,Mwiberi S,Pickford R,et al. 2021. Longitudinal associations between ambient air pollution and insulin sensitivity:Results from the KORA cohort study. Lancet Planet Health,5(1):e39-e49 doi: 10.1016/S2542-5196(20)30275-8
    [40] Zheng Z,Xu X H,Zhang X B,et al. 2013. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol,58(1):148-154 doi: 10.1016/j.jhep.2012.08.009
    [41] Zhu X L,Chen C,Zhang B,et al. 2021. Acute effects of personal exposure to fine particulate matter on salivary and urinary biomarkers of inflammation and oxidative stress in healthy adults. Chemosphere,272:129906 doi: 10.1016/j.chemosphere.2021.129906
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  32
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回