留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气候变化情景下未来中国热相关死亡风险的预估

陆开来 班婕 王情 陈晨 许怀悦 李湉湉

陆开来,班婕,王情,陈晨,许怀悦,李湉湉. 2022. 不同气候变化情景下未来中国热相关死亡风险的预估. 气象学报,80(3):1-9 doi: 10.11676/qxxb2022.037
引用本文: 陆开来,班婕,王情,陈晨,许怀悦,李湉湉. 2022. 不同气候变化情景下未来中国热相关死亡风险的预估. 气象学报,80(3):1-9 doi: 10.11676/qxxb2022.037
Lu Kailai, Ban Jie, Wang Qing, Chen Chen, Xu Huaiyue, Li Tiantian. 2022. Prediction of future heat-related death risk in China under different climate change scenarios. Acta Meteorologica Sinica, 80(3):1-9 doi: 10.11676/qxxb2022.037
Citation: Lu Kailai, Ban Jie, Wang Qing, Chen Chen, Xu Huaiyue, Li Tiantian. 2022. Prediction of future heat-related death risk in China under different climate change scenarios. Acta Meteorologica Sinica, 80(3):1-9 doi: 10.11676/qxxb2022.037

不同气候变化情景下未来中国热相关死亡风险的预估

doi: 10.11676/qxxb2022.037
基金项目: 江苏省大气环境监测与污染控制高技术研究重点实验室开放基金项目(KHK2108)、国家自然科学基金重大研究计划重点支持项目(92143202)
详细信息
    作者简介:

    陆开来,主要从事地理信息与环境健康研究。E-mail:rikuya1@outlook.com

    通讯作者:

    李湉湉,主要从事空气污染、气候变化与环境健康研究。E-mail:litiantian@ nieh.chinacdc.cn

  • 中图分类号: P49  R122.2

Prediction of future heat-related death risk in China under different climate change scenarios

  • 摘要: 预估气候变化背景下中国未来近期、中期及远期温度热相关人群超额死亡风险,为未来热相关人群健康风险防范提供科学依据。基于中国网格化日均气温数据集与3种排放情景下未来日均气温数据、历史人口数据与3种生育率情景下未来人口数据以及死因数据资料计算的热效应暴露-反应关系,计算每日热相关死亡人数。结果表明:(1)未来中国平均气温将持续升高,且北方地区升温幅度较大。(2)1986—2005年中国热相关非意外总死亡人数约为7.1(95%置信区间:5.7—8.5)万。(3)RCP2.6、RCP4.5情景下未来中国热相关非意外总死亡人数均呈现先升后降的变化趋势。在21世纪末不同情景下的热相关非意外总死亡人数均高于基准年代。(4)未来不同情景下中国热相关非意外总死亡人数在黄淮海地区以及成渝地区均呈上升趋势,在RCP2.6、RCP4.5情景下北方地区热相关非意外总死亡人数呈下降趋势,东南沿海地区在21世纪30年代后开始呈下降趋势。总体而言在全球变暖的背景下未来中国热相关死亡风险将上升,而在RCP2.6情景下可以有效抑制其上升趋势。

     

  • 图 1  研究区、县分布

    Figure 1.  Geographic distribution of study counties

    图 2  HadGEM2-ES、MPI-ESM-MR与NorESM1-M模拟误差订正前后日均气温的泰勒图

    Figure 2.  Taylor diagram of simulated daily average temperature before and after bias correction by HadGEM2-ES,MPI-ESM-MR and NorESM1-M models

    图 3  中国 (a) 基准年代 (1986—2005年) 均温和21世纪80—90年代 (2081-2100年) RCP2.6情景 (b)、RCP4.5情景 (c)、RCP8.5情景 (d) 与基准年代温差的空间分布

    Figure 3.  (a) Average temperature in China during the baseline years (1986—2005) and temperature increases under (b) RCP2.6 scenario,(c) RCP4.5 scenario and (d) RCP8.5 scenarios in the 2090s compared to that in the baseline years

    图 4  温度相关 (a) 北方总人群、(b) 北方75岁以上人群、(c) 北方75岁及以下人群、(d) 南方总人群、(e) 南方75岁以上人群、(f) 南方75岁及以下人群的非意外总死亡风险的暴露-反应关系曲线

    Figure 4.  Exposure-response curves of temperature-related total non-accidental mortality risk for (a) group in northern China,(b) group over 75 years old in northern China,(c) group under 75 years old in northern China,(d) group in southern China,(e) group over 75 years old in southern China ,(f) group under 75 years old in southern China

    图 5  未来不同排放-人口情景下中国年均热相关非意外总死亡人数

    Figure 5.  Total annual heat-related non-accidental deaths in China under different emission-population scenarios in the future

    图 6  SSP2-S2人口情景下未来不同排放情景 (a. RCP2.6,b. RCP4.5,c. RCP8.5) 及年代 (1. 20—30年代,2. 50—60年代,3. 80—90年代) 中国年均热相关非意外总死亡人数变化

    Figure 6.  Changes in annual average heat-related non-accidental total deaths under different future emission scenarios (a. RCP2.6,b. RCP4.5,c. RCP8.5) and time (1. 2030 s,2. 2060 s,3. 2090 s) and under the SSP2-S2 population scenario in China

    表  1  研究期间人群死亡与环境因素暴露日均水平分布

    Table  1.   Summary statistics of environmental factors and daily number of non-accidental deaths

    指标范围(均值±标准差)特征值
    最小值25%分位数中位数75%分位数最大值
     气温(℃)22.94±5.76−20.9919.8423.9627.0938.02
     相对湿度(%)73.72±14.296.8966.2976.5983.9799.92
     非意外总死亡数(人/d)9.61±6.8705813134
    下载: 导出CSV
  • [1] 蔡怡亨,韩振宇,周波涛. 2021. 对基于RegCM4降尺度的中国区域性暴雨事件模拟评估. 气候变化研究进展,17(4):420-429

    Cai Y H,Han Z Y,Zhou B T. 2021. Evaluation of RegCM4 downscaling simulations on regional rainstorm events in China. Climate Change Res,17(4):420-429 (in Chinese)
    [2] 吴佳,高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报,56(4):1102-1111 doi: 10.6038/cjg20130406

    Wu J,Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J Geophys,56(4):1102-1111 (in Chinese) doi: 10.6038/cjg20130406
    [3] 吴婕,高学杰,徐影. 2018. RegCM4模式对雄安及周边区域气候变化的集合预估. 大气科学,42(3):696-705

    Wu J,Gao X J,Xu Y. 2018. Climate change projection over Xiong’an District and its adjacent areas:An ensemble of RegCM4 simulations. Chinese J Atmos Sci,42(3):696-705 (in Chinese)
    [4] 许怀悦,王情,马润美等. 2021. 温度相关的疾病负担研究进展. 山东大学学报(医学版),59(12):13-19,32

    Xu H Y,Wang Q,Ma R M,et al. 2021. Temperature-related burden of disease:A review of recent studies. J Shandong Univ (Health Sci),59(12):13-19,32 (in Chinese)
    [5] 庄园煌,张井勇,梁健. 2021. 1.5℃与2℃温升目标下“一带一路”主要陆域气温和降水变化的CMIP6多模式预估. 气候与环境研究,26(4):374-390 doi: 10.3878/j.issn.1006-9585.2021.20153

    Zhuang Y H,Zhang J Y,Liang J. 2021. Projected temperature and precipitation changes over major land regions of the belt and road initiative under the 1.5°C and 2°C climate targets by the CMIP6 multi-model ensemble. Climatic Environ Res,26(4):374-390 (in Chinese) doi: 10.3878/j.issn.1006-9585.2021.20153
    [6] Cai W J,Zhang C,Suen H P,et al. 2020. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health,6(1):e64-e81
    [7] Carmona R,Linares C,Ortiz C,et al. 2017. Spatial variability in threshold temperatures of heat wave mortality:Impact assessment on prevention plans. Int J Environ Health Res,27(6):463-475 doi: 10.1080/09603123.2017.1379056
    [8] Chen K,Horton R M,Bader D A,et al. 2017. Impact of climate change on heat-related mortality in Jiangsu province,China. Environ Pollut,224:317-325 doi: 10.1016/j.envpol.2017.02.011
    [9] Chen Y D,Guo F,Wang J C,et al. 2020. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci Data,7(1):83 doi: 10.1038/s41597-020-0421-y
    [10] Gasparrini A,Guo Y M,Sera F,et al. 2017. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health,1(9):e360-e367 doi: 10.1016/S2542-5196(17)30156-0
    [11] GBD 2019 Risk Factors Collaborators. 2020. Global burden of 87 risk factors in 204 countries and territories,1990-2019:A systematic analysis for the Global Burden of Disease Study 2019. Lancet,396(10258):1223-1249 doi: 10.1016/S0140-6736(20)30752-2
    [12] Heaviside C,Vardoulakis S,Cai X M. 2016. Attribution of mortality to the urban heat island during heatwaves in the West Midlands,UK. Environ Health,15(S1):S27 doi: 10.1186/s12940-016-0100-9
    [13] Hempel S,Frieler K,Warszawski L,et al. 2013. A trend-preserving bias correction: The ISI-MIP approach. Earth Syst Dynam,4(2):219-236 doi: 10.5194/esd-4-219-2013
    [14] IPCC. 2021. Summary for policymakers∥IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
    [15] Li T T,Horton R M,Bader D A,et al. 2016. Aging will amplify the heat-related mortality risk under a changing climate:Projection for the elderly in Beijing,China. Sci Rep,6:28161 doi: 10.1038/srep28161
    [16] Li Y,Ren T,Kinney P L,et al. 2018. Projecting future climate change impacts on heat-related mortality in large urban areas in China. Environ Res,163:171-185 doi: 10.1016/j.envres.2018.01.047
    [17] Mercereau L,Todd N,Rey G,et al. 2017. Comparison of the temperature-mortality relationship in foreign born and native born died in France between 2000 and 2009. Int J Biometeorol,61(10):1873-1884 doi: 10.1007/s00484-017-1373-6
    [18] Vicedo-Cabrera A M,Scovronick N,Sera F,et al. 2021. The burden of heat-related mortality attributable to recent human-induced climate change. Nat Climate Change,11(6):492-500 doi: 10.1038/s41558-021-01058-x
    [19] Wang Y J,Wang A Q,Zhai J Q,et al. 2019. Tens of thousands additional deaths annually in cities of China between 1.5℃ and 2.0℃ warming. Nat Commun,10(1):3376 doi: 10.1038/s41467-019-11283-w
    [20] Watts N,Adger W N,Ayeb-Karlsson S,et al. 2017. The Lancet Countdown:Tracking progress on health and climate change. Lancet,389(10074):1151-1164 doi: 10.1016/S0140-6736(16)32124-9
    [21] Yang J,Zhou M G,Ren Z P,et al. 2021. Projecting heat-related excess mortality under climate change scenarios in China. Nat Commun,12(1):1039 doi: 10.1038/s41467-021-21305-1
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  14
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回