留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闽南沿海2018—2019年季风爆发前后雨滴谱特征对比分析

胡雅君 张伟 张玉轩 温龙

胡雅君,张伟,张玉轩,温龙. 2022. 闽南沿海2018—2019年季风爆发前后雨滴谱特征对比分析. 气象学报,80(4):618-631 doi: 10.11676/qxxb2022.045
引用本文: 胡雅君,张伟,张玉轩,温龙. 2022. 闽南沿海2018—2019年季风爆发前后雨滴谱特征对比分析. 气象学报,80(4):618-631 doi: 10.11676/qxxb2022.045
Hu Yajun, Zhang Wei, Zhang Yuxuan, Wen Long. 2022. Comparative analysis of raindrop size distribution characteristics before and after monsoon onset in southern coast of Fujian province in 2018—2019. Acta Meteorologica Sinica, 80(4):618-631 doi: 10.11676/qxxb2022.045
Citation: Hu Yajun, Zhang Wei, Zhang Yuxuan, Wen Long. 2022. Comparative analysis of raindrop size distribution characteristics before and after monsoon onset in southern coast of Fujian province in 2018—2019. Acta Meteorologica Sinica, 80(4):618-631 doi: 10.11676/qxxb2022.045

闽南沿海2018—2019年季风爆发前后雨滴谱特征对比分析

doi: 10.11676/qxxb2022.045
基金项目: 国家自然科学基金项目(41905021)、国家自然科学基金青年基金项目(41805028)、福建省灾害天气重点实验室重大科技专项(2020BY08)
详细信息
    作者简介:

    胡雅君,主要从事中尺度天气研究。E-mail:hyjxzs2016@126.com

    通讯作者:

    温龙,主要从事降水微物理研究。E-mail:wenlong@smail.nju.edu.cn

  • 中图分类号: P426.61

Comparative analysis of raindrop size distribution characteristics before and after monsoon onset in southern coast of Fujian province in 2018—2019

  • 摘要: 为研究华南前汛期季风爆发前后闽南地区的雨滴谱特征差异,利用2018—2019年厦门站和同安站4—6月的降水现象仪资料,对比分析了季风爆发前后闽南沿海层状云和对流云的雨滴谱分布及微物理参数差异。结果表明,华南前汛期闽南沿海层状云降水占比明显高于对流云降水,但对流云降水的滴谱分布更宽,峰值粒径以上的各粒径区间粒子浓度均大于层状云降水。不论层状云或是对流云降水,2018年季风爆发后均表现为质量加权平均直径(Dm)减小,广义截距参数(Nw)增大。2019年季风爆发后Dm增大,层状云的Nw减小,对流云Nw增大。两年整体呈现相反的演变趋势。层状云的降水率(R)和液态水含量(W)的演变趋势与Nw一致,而对流云的RWDm一致。闽南沿海雨滴谱微物理参数接近于华南沿海,与华东区域相比,整体浓度更高,粒子尺度略小。Z-R关系拟合表明季风爆发前、后层状云与对流云的拟合系数、决定系数具有较大差异,其中对流云拟合效果相对更好。基于Z=300R1.4的定量降水估测对层状云降水和量级较小的对流云降水整体上存在不同程度的低估,对于量级较大的对流云降水存在高估。探讨了环流形势对雨滴谱的可能影响。结果表明绝对水汽含量可能会影响粒子数浓度,而西南风等动力条件和对流有效位能等热力条件会通过影响对流的高度和降水的微物理过程进而可能会影响雨滴谱分布。

     

  • 图 1  闽南地区观测仪器所在站点分布 (色阶为地形高度)

    Figure 1.  Locations of observation instruments in southern Fujian (shadings indicate topographic height)

    图 2  厦门站和同安站所有粒子雨滴谱速度-直径分布 (色阶代表粒子数量,黑色实线代表Atlas等 (1973) 经典下落末速度,上下两条虚线分别代表经典下落末速度60%的质控曲线)

    Figure 2.  Occurrence of velocity-diameter combinations with drop counts at Xiamen and Tong’an stations (Color shadings represent the measured drop counts. The black solid line indicates terminal drop velocity (Atlas, et al,1973) and the two dashed lines represent the 60% filter of drops)

    图 3  厦门站 (a) 和同安站 (b) 降水现象仪和雨量筒的小时雨量对比

    Figure 3.  Distrometer versus rain gauge observed hourly rainfall at (a) Xiamen station and (b) Tong’an station

    图 4  厦门站和同安站两种类型降水的雨滴谱分布 (红线代表对流云降水,蓝线代表层状云降水,实线代表厦门站,虚线代表同安站)

    Figure 4.  Composite raindrop spectrum curves for two different rainfall types at Xiamen and Tong’an stations (red lines are for convective precipitation,blue lines are for stratiform precipitation,solid lines indicate Xiamen and dashed lines indicate Tong’an)

    图 5  2018和2019年季风爆发前、后 (a) 层状云降水和 (b) 对流云降水的平均雨滴谱分布

    Figure 5.  Mean DSD of (a) stratiform and (b) convective precipitation before and after monsoon onset in 2018 and 2019

    图 6  实测雨滴谱参数μΛ散点及拟合曲线 (a、c分别为2018年季风爆发前、后,b、d分别为2019年季风爆发前、后,实线为拟合曲线,虚线为Chen等 (2013) 拟合结果)

    Figure 6.  Scatter plots of μ and Λ calculated from measured raindrop parameters and fitting curves (a,c indicate before and after monsoon onset in 2018;b,d for 2019; black dashed lines show results of Chen, et al (2013))

    图 7  季风爆发前、后的Z-R关系拟合 (a、c分别为2018年季风爆发前、后,b、d分别为2019年季风爆发前、后;红色实线为对流云降水,蓝色实线为层状云降水,黑色虚线为Fulton等 (1998) 拟合结果)

    Figure 7.  Scatter plots of Z-R values and fitted power law relations before and after monsoon onset in 2018 and 2019 (a,c indicate before and after monsoon of 2018;b,d for 2019; red solid lines are for convectiveprecipitation,blue solid lines are for stratiform precipitation, black dashed lines show results of Fulton, et al (1998))

    图 8  2018 (a、c、e) 和2019年 (b、d、f) 500 hPa风场 (矢线,单位:m/s) 和位势高度 (色阶,单位:dagpm)(a、b. 季风爆发前, c、d. 季风爆发后,e、f. 季风爆发后减季风爆发前)

    Figure 8.  2018 (a,c,e) and 2019 (b,d,f) 500 hPa wind field (arrow,unit:m/s) and geopotential height (color gradation,unit:dagpm),(a,b) before and (c,d) after monsoon onset ,(e,f) difference between before and after monsoon onset

    图 9  同图8,但为925 hPa风场和比湿

    Figure 9.  As in Fig. 8 but for 925 hPa wind field and specific humidity

    图 10  2018年和2019年季风爆发前、后闽南沿海对流有效位能的箱线图

    Figure 10.  Boxplot of CAPE before and after monsoon onset for 2018 and 2019 in southern coast of Fujian

    表  1  2018和2019年季风爆发前、后厦门站和同安站累计雨量、天数和日均雨量

    Table  1.   Accumulated precipitation,number of days and average daily rainfall at Xiamen and Tong’an stations before and after monsoon onset for 2018 and 2019

    站点2018年爆发前2018年爆发后2019年爆发前2019年爆发后
    累计雨量(mm)天数(d)日均雨量(mm)累计雨量(mm)天数(d)日均雨量(mm)累计雨量(mm)天数(d)日均雨量(mm)累计雨量(mm)天数(d)日均雨量(mm)
    厦门130.9642.05170.427 6.31146.9373.97266.4544.93
    同安165.8642.58280.42710.38175.1374.73410.9547.61
    下载: 导出CSV

    表  2  2018和2019年季风爆发前、后雨滴谱微物理特征量的平均值及其与华南、华东地区的对比 (斜杠前为季风爆发前数据,斜杠后为季风爆发后数据)

    Table  2.   DSD micro-physical parameters before and after monsoon onset and comparison with those in southern and eastern China (data on the left and right of slash indicate parameter before and after monsoon onset,respectively)

    年份降水类型样本数Dm(mm)lgNw(mm−1·m−3R(mm/h)W(g/m3累计降水量(mm)降水贡献(%)
    2018层云957/10871.31/1.063.90/4.502.05/2.250.13/0.1832.65/40.8033.96/24.14
    对流142/3251.94/1.813.94/4.0826.82/23.671.33/1.2463.48/128.2466.04/75.86
    2019层云3083/27351.19/1.244.24/3.972.24/2.200.16/0.15115.26/100.269.18/39.73
    对流163/3901.71/1.744.01/4.0718.90/23.381.00/1.2151.34/152.030.82/60.27
    华南[a]层云170/1881.43/1.513.65/3.593.00/6.07///
    对流50/1051.70/1.904.02/3.7717.35/18.49///
    华东[b]层云41841.393.402.100.115//
    对流15121.803.7314.900.698//
    注:[a]参考Zeng等(2019),[b]参考Chen等(2013)
    下载: 导出CSV

    表  3  2018和2019年季风爆发前、后两类降水的Z-R关系 (斜杠前为季风爆发前数据,斜杠后为季风爆发后数据)

    Table  3.   Z-R relationship before and after monsoon onset of 2018 and 2019 (data on the left and right of slash indicate parameters before and after monsoon onset,respectively)

    年份降水类型Z=ARb关系中的参数
    Ab决定系数R2
    2018层云251.83/143.91.59/1.480.66/0.55
    对流200.03/78.231.53/1.790.85/0.86
    2019层云189.02/246.831.59/1.430.65/0.73
    对流158.34/118.571.57/1.620.87/0.91
    下载: 导出CSV
  • [1] 池艳珍,何金海,吴志伟. 2005. 华南前汛期不同降水时段的特征分析. 南京气象学院学报,28(2):163-171

    Chi Y Z,He J H,Wu Z W. 2005. Features analysis of the different precipitation periods in the pre-flood season in South China. J Nanjing Inst Meteor,28(2):163-171 (in Chinese)
    [2] 冯雷,陈宝君. 2009. 利用PMS的GBPP-100型雨滴谱仪观测资料确定Z-R关系. 气象科学,29(2):2192-2198

    Feng L,Chen B J. 2009. The radar reflectivity-rainrate relationships as inferred from ground-based raindrop spectra observed by GBPP-100 probe. Scientia Meteor Sinica,29(2):2192-2198 (in Chinese)
    [3] 胡娅敏,翟盘茂,罗晓玲等. 2014. 2013年华南前汛期持续性强降水的大尺度环流与低频信号特征. 气象学报,72(3):465-477 doi: 10.11676/qxxb2014.042

    Hu Y M,Zhai P M,Luo X L,et al. 2014. Large scale circulation and low frequency signal characteristics for the persistent extreme precipitation in the first rainy season over South China in 2013. Acta Meteor Sinica,72(3):465-477 (in Chinese) doi: 10.11676/qxxb2014.042
    [4] 黄兴友,印佳楠,马雷等. 2019. 南京地区雨滴谱参数的详细统计分析及其在天气雷达探测中的应用. 大气科学,43(3):691-704

    Huang X Y,Yin J N,Ma L,et al. 2019. Comprehensive statistical analysis of rain drop size distribution parameters and their application to weather radar measurement in Nanjing. Chinese J Atmos Sci,43(3):691-704 (in Chinese)
    [5] 金祺,袁野,刘慧娟等. 2015. 江淮之间夏季雨滴谱特征分析. 气象学报,73(4):778-788 doi: 10.11676/qxxb2015.036

    Jin Q,Yuan Y,Liu H J,et al. 2015. Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer. Acta Meteor Sinica,73(4):778-788 (in Chinese) doi: 10.11676/qxxb2015.036
    [6] 李慧,银燕,单云鹏等. 2018. 黄山层状云和对流云降水不同高度的雨滴谱统计特征分析. 大气科学,42(2):268-280

    Li H,Yin Y,Shan Y P,et al. 2018. Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt. Huangshan. Chinese J Atmos Sci,42(2):268-280 (in Chinese)
    [7] 刘红燕,陈洪滨,雷恒池等. 2008. 利用2004年北京雨滴谱资料分析降水强度和雷达反射率因子的关系. 气象学报,66(1):125-129 doi: 10.3321/j.issn:0577-6619.2008.01.013

    Liu H Y,Chen H B,Lei H C,et al. 2008. Relationship between rain rate and radar reflectivity based on the raindrop distribution data in Beijing during 2004. Acta Meteor Sinica,66(1):125-129 (in Chinese) doi: 10.3321/j.issn:0577-6619.2008.01.013
    [8] 濮江平,张昊,周晓等. 2012. 对流性降水雨滴谱特征及其与雷达反射率因子的对比分析. 气象科学,32(3):253-259 doi: 10.3969/2012jms.0013

    Pu J P,Zhang H,Zhou X,et al. 2012. Comparative analysis on rain spectrum characteristics of deep convective cloud and its radar reflectivity. J Meteor Sci,32(3):253-259 (in Chinese) doi: 10.3969/2012jms.0013
    [9] 宋明坤,李耀东,胡亮. 2010. 夏季风爆发前后南海地区降水性质的变化. 热带气象学报,26(3):339-348 doi: 10.3969/j.issn.1004-4965.2010.03.011

    Song M K,Li Y D,Hu L. 2010. An analysis of precipitation during South China Sea monsoon onset period in South China Sea. J Trop Meteor,26(3):339-348 (in Chinese) doi: 10.3969/j.issn.1004-4965.2010.03.011
    [10] 孙继松,陶祖钰. 2012. 强对流天气分析与预报中的若干基本问题. 气象,38(2):164-173

    Sun J S,Tao Z Y. 2012. Some essential issues connected with severe convective weather analysis and forecast. Meteor Mon,38(2):164-173 (in Chinese)
    [11] 吴兑,黄浩辉. 1994a. 广东云与降水的宏微观物理特征. 气象科技,(1):14-24

    Wu D,Huang H H. 1994a. Macro and micro physical feature of cloud and precipitation in Guangdong. Meteor Sci Technol,(1):14-24 (in Chinese)
    [12] 吴兑,甘春玲,陈位超等. 1994b. 华南准静止锋暖区内降水的物理化学特征. 气象,20(2):18-24

    Wu D,Gan C L,Chen W C,et al. 1994b. Physical and chemical characteristics of precipitation within the warm sector of a quasi-stationary front in South China. Meteor Mon,20(2):18-24 (in Chinese)
    [13] 吴兑. 1989. 广州地区1984年6月小阵雨的微物理结构. 气象,15(5):16-22 doi: 10.7519/j.issn.1000-0526.1989.05.003

    Wu D. 1989. The micro-structure of rain shower over Guangzhou area in June of 1984. Meteor Mon,15(5):16-22 (in Chinese) doi: 10.7519/j.issn.1000-0526.1989.05.003
    [14] 吴兑,邓雪娇,黄浩辉. 1998. 广州地区1994年6月洪涝期间降水的物理化学特征. 大气科学,22(2):228-234 doi: 10.3878/j.issn.1006-9895.1998.02.11

    Wu D,Deng X J,Huang H H. 1998. The physical and chemical features of heavy rain over Guangzhou area in June 1994. Sci Atmos Sinica,22(2):228-234 (in Chinese) doi: 10.3878/j.issn.1006-9895.1998.02.11
    [15] 伍红雨,杨崧,蒋兴文. 2015. 华南前汛期开始日期异常与大气环流和海温变化的关系. 气象学报,73(2):319-330 doi: 10.11676/qxxb2015.046

    Wu H Y,Yang S,Jiang X W. 2015. Anomalous onset date of the first rainy season in South China and its relationship with the variation of the atmospheric circulation and SST. Acta Meteor Sinica,73(2):319-330 (in Chinese) doi: 10.11676/qxxb2015.046
    [16] 杨加艳,肖辉,肖稳安等. 2010. 基于SATP和SIFT方法分析雨滴谱特征及参数关系. 高原气象,29(2):486-497

    Yang J Y,Xiao H,Xiao W A,et al. 2010. A study of raindrop size distributions and their characteristic parameters based on the methods of SATP and SIFT. Plateau Meteor,29(2):486-497 (in Chinese)
    [17] 章丽娜,林鹏飞,熊喆等. 2011. 热带大气季节内振荡对华南前汛期降水的影响. 大气科学,35(3):560-570 doi: 10.3878/j.issn.1006-9895.2011.03.15

    Zhang L N,Lin P F,Xiong Z,et al. 2011. Impact of the Madden-Julian Oscillation on pre-flood season precipitation in South China. Chinese J Atmos Sci,35(3):560-570 (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.03.15
    [18] 郑彬,梁建茵,林爱兰等. 2006. 华南前汛期的锋面降水和夏季风降水Ⅰ: 划分日期的确定. 大气科学,30(6):1207-1216 doi: 10.3878/j.issn.1006-9895.2006.06.15

    Zheng B,Liang J Y,Lin A L,et al. 2006. Frontal rain and summer monsoon rain during pre-rainy season in South China. Part Ⅰ:Determination of the division dates. Chinese J Atmos Sci,30(6):1207-1216 (in Chinese) doi: 10.3878/j.issn.1006-9895.2006.06.15
    [19] 郑彬,谷德军,李春晖等. 2007. 华南前汛期的锋面降水和夏季风降水Ⅱ:空间分布特征. 大气科学,31(3):495-504

    Zheng B,Gu D J,Li C H,et al. 2007. Frontal rain and summer monsoon rain during pre-rainy season in South China. Part Ⅱ:Spatial patterns. Chinese J Atmos Sci,31(3):495-504 (in Chinese)
    [20] Atlas D,Srivastava R C,Sekhon R S. 1973. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys,11(1):1-35 doi: 10.1029/RG011i001p00001
    [21] Battan L J. 1976. Vertical air motions and the Z-R relation. J Appl Meteor Climatol,15(10):1120-1121 doi: 10.1175/1520-0450(1976)015<1120:VAMATR>2.0.CO;2
    [22] Brandes E A,Zhang G F,Vivekanandan J. 2003. An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J Appl Meteor Climatol,42(5):652-660 doi: 10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2
    [23] Bringi V N B,Chandrasekar V,Hubbert J,et al. 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci,60(2):354-365 doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [24] Chen B J,Yang J,Pu J P. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J Meteor Soc Japan,91(2):215-227 doi: 10.2151/jmsj.2013-208
    [25] Chen B J,Wang J,Gong D L. 2016. Raindrop size distribution in a midlatitude continental squall line measured by thies optical disdrometers over East China. J Appl Meteor Climatol,55(3):621-634 doi: 10.1175/JAMC-D-15-0127.1
    [26] Friedrich K,Higgins S,Masters F J,et al. 2013. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol,30(9):2063-2080 doi: 10.1175/JTECH-D-12-00254.1
    [27] Fulton R A,Breidenbach J P,Seo D J,et al. 1998. The WSR-88D rainfall algorithm. Wea Forecast,13(2):377-395 doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
    [28] Hersbach H,Bell B,Berrisford P,et al. 2020. The ERA5 global reanalysis. Quart J Roy Meteor Soc,146(730):1999-2049 doi: 10.1002/qj.3803
    [29] Liu X T,Wan Q L,Wang H,et al. 2018. Raindrop size distribution parameters retrieved from Guangzhou S-band polarimetric radar observations. J Meteor Res,32(4):571-583 doi: 10.1007/s13351-018-7152-4
    [30] Maki M,Keenan T D,Sasaki Y,et al. 2001. Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin,Australia. J Appl Meteor Climatol,40(8):1393-1412 doi: 10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2
    [31] Marshall J S,Palmer W M K. 1948. The distribution of raindrops with size. J Atmos Sci,5(4):165-166
    [32] Rao T N,Radhakrishna B,Nakamura K,et al. 2009. Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki. Quart J Roy Meteor Soc,135(643):1630-1637 doi: 10.1002/qj.432
    [33] Seela B K,Janapati J,Lin P L,et al. 2018. Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. J Geophys Res,123(20):11602-11624 doi: 10.1029/2018JD028307
    [34] Sharma S,Konwar M,Sarma D K,et al. 2009. Characteristics of rain integral parameters during tropical convective,transition,and stratiform rain at Gadanki and its application in rain retrieval. J Appl Meteor Climatol,48(6):1245-1266 doi: 10.1175/2008JAMC1948.1
    [35] Tokay A,Short D A. 1996. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteor Climatol,35(3):355-371 doi: 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [36] Tokay A,Bashor P G,Habib E,et al. 2008. Raindrop size distribution measurements in tropical cyclones. Mon Wea Rev,136(5):1669-1685 doi: 10.1175/2007MWR2122.1
    [37] Tokay A,Petersen W A,Gatlin P,et al. 2013. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Ocean Technol,30(8):1672-1690 doi: 10.1175/JTECH-D-12-00163.1
    [38] Ulbrich C W. 1983. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor Climatol,22(10):1764-1775 doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [39] Vivekanandan J,Zhang G F,Brandes E. 2004. Polarimetric radar estimators based on a constrained gamma drop size distribution model. J Appl Meteor Climatol,43(2):217-230 doi: 10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2
    [40] Wen L,Zhao K,Zhang G F,et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res,121(5):2265-2282 doi: 10.1002/2015JD024160
    [41] Wen L,Zhao K,Wang M Y,et al. 2019. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci,36(4):346-362 doi: 10.1007/s00376-018-8107-5
    [42] Wu Y H,Liu L P. 2017. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and Southern China. Adv Atmos Sci,34(6):727-736 doi: 10.1007/s00376-016-5235-7
    [43] Zeng Q W,Zhang Y,Lei H C,et al. 2019. Microphysical characteristics of precipitation during pre-monsoon,monsoon,and post-monsoon periods over the South China Sea. Adv Atmos Sci,36(10):1103-1120 doi: 10.1007/s00376-019-8225-8
    [44] Zhang G F,Vivekanandan J,Brandes E. 2001. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens,39(4):830-841 doi: 10.1109/36.917906
    [45] Zhang G F,Vivekanandan J,Brandes E A,et al. 2003. The shape-slope relation in observed gamma raindrop size distributions:Statistical error or useful information?. J Atmos Ocean Technol,20(8):1106-1119 doi: 10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2
    [46] Zhang Y H,Liu L P,Bi S B,et al. 2019. Analysis of dual-polarimetric radar variables and quantitative precipitation estimators for landfall typhoons and squall lines based on disdrometer data in Southern China. Atmosphere,10(1):30 doi: 10.3390/atmos10010030
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  27
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-06-09
  • 修回日期:  2022-03-27
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回