留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双偏振雷达KDP足及ZDR弧的自动识别及应用研究

管理 戴建华 袁招洪 陶岚 尹春光 邹兰军

管理,戴建华,袁招洪,陶岚,尹春光,邹兰军. 2022. 双偏振雷达KDP足及ZDR弧的自动识别及应用研究. 气象学报,80(4):578-591 doi: 10.11676/qxxb2022.047
引用本文: 管理,戴建华,袁招洪,陶岚,尹春光,邹兰军. 2022. 双偏振雷达KDP足及ZDR弧的自动识别及应用研究. 气象学报,80(4):578-591 doi: 10.11676/qxxb2022.047
Guan Li, Dai Jianhua, Yuan Zhaohong, Tao Lan, Yin Chunguang, Zou Lanjun. 2022. Research on dual-polarimetric radar KDP foot and ZDR arc recognition and application. Acta Meteorologica Sinica, 80(4):578-591 doi: 10.11676/qxxb2022.047
Citation: Guan Li, Dai Jianhua, Yuan Zhaohong, Tao Lan, Yin Chunguang, Zou Lanjun. 2022. Research on dual-polarimetric radar KDP foot and ZDR arc recognition and application. Acta Meteorologica Sinica, 80(4):578-591 doi: 10.11676/qxxb2022.047

双偏振雷达KDP足及ZDR弧的自动识别及应用研究

doi: 10.11676/qxxb2022.047
基金项目: 国家自然科学基金项目(41775049)、国家重点研发计划项目(2018YFC1507601)、上海市“科技创新行动计划”项目(21002410200)、区域气象科技协同创新基金项目(QYHZ202105、QYHZ202101)
详细信息
    作者简介:

    管理,主要从事双偏振雷达资料处理与应用研究。E-mail:glion2005@163.com

    通讯作者:

    戴建华,主要从事强对流天气预报预警技术研究。E-mail:djhnn@sina.com

  • 中图分类号: P435

Research on dual-polarimetric radar KDP foot and ZDR arc recognition and application

  • 摘要: 差分反射率($ {Z}_{\mathrm{D}\mathrm{R}} $)弧表示超级单体风暴中前侧入流区域弧状的${Z}_{\mathrm{D}\mathrm{R}}$大值区,差分相移率($ {K}_{\mathrm{D}\mathrm{P}} $)足则表示风暴核心顺切变方向$ {K}_{\mathrm{D}\mathrm{P}} $大值区。超级单体风暴中的$ {Z}_{\mathrm{D}\mathrm{R}} $弧及$ {Z}_{\mathrm{D}\mathrm{R}} $弧-$ {K}_{\mathrm{D}\mathrm{P}} $足分离特征已被证实为风暴中粒子“分选机制”的重要示踪因子,并且$ {Z}_{\mathrm{D}\mathrm{R}} $弧和$ {K}_{\mathrm{D}\mathrm{P}} $足质心连线和分离角与低层入流和风暴相对螺旋度相关较好。为快速识别$ {K}_{\mathrm{D}\mathrm{P}} $足及$ {Z}_{\mathrm{D}\mathrm{R}} $弧并提取$ {Z}_{\mathrm{D}\mathrm{R}} $弧-$ {K}_{\mathrm{D}\mathrm{P}} $足分离特征,运用其指示意义提升极端大风和冰雹的预报能力。基于经典概念模型和机器学习方法,利用华东地区S波段双偏振雷达探测资料,进行了$ {K}_{\mathrm{D}\mathrm{P}} $足和$ {Z}_{\mathrm{D}\mathrm{R}} $弧的自动识别算法设计,并计算了$ {Z}_{\mathrm{D}\mathrm{R}} $${\text -}{K}_{\mathrm{D}\mathrm{P}} $足质心距离和分离角。而后针对华东地区4次超级单体风暴过程,结合地面自动观测资料验证了$ {K}_{\mathrm{D}\mathrm{P}} $足及$ {Z}_{\mathrm{D}\mathrm{R}} $弧识别结果及定量化计算效果。结果显示:设计的方法能够准确识别出超级单体风暴中的$ {K}_{\mathrm{D}\mathrm{P}} $足和$ {Z}_{\mathrm{D}\mathrm{R}} $弧,$ {Z}_{\mathrm{D}\mathrm{R}} $${\text -}{K}_{\mathrm{D}\mathrm{P}} $足质心距离和分离角的变化也可在一定程度上指示极端大风的发生。

     

  • 图 1  超级单体风暴ZDR弧及KDP足示意 (Romine,et al,2008

    Figure 1.  Schematic diagram of ZDR arc and KDP foot in supercell storm (Romine,et al,2008

    图 2  风暴分离矢量和分离角示意 (Loeffler,et al,2018

    Figure 2.  Schematic depiction of the separation vector and separation orientation relative to storm motion in an idealized storm (Loeffler,et al,2018

    图 3  算法流程

    Figure 3.  Flowchart of algorithm

    图 4  2017年7月5日17时52分南汇双偏振雷达0.5°仰角水平ZH(a)、ZDR(b)、KDP(c)和Vr(d)(黑色多边形表示ZDR弧的范围,五角星代表青浦水上运动中心位置)

    Figure 4.  ZH (a),ZDR (b),KDP (c) and Vr (d) at 0.5° elevation angle observed by Nanhui dual-polarimetric radar at 17:52 BT 5 July 2017 (black polygon represents the ZDR arc; pentagram represents location of Qingpu water sports center)

    图 5  2017年7月5日17时46分(a)、17时52分(b)、17时57分(c)及18时03分(d)KDP足及ZDR弧识别结果 (橙色实线为35 dBz等值线,红色实线为40 dBz等值线,紫色多边形为ZDR弧,绿色多边形为KDP足,黑色圆圈为ZH质心,星号为ZDR弧质心,三角为KDP足质心,黑色实线为分离矢量)

    Figure 5.  Recognition of ZDR arc and KDP foot at 17:46 BT (a),17:52 BT (b),17:57 BT (c) and 18:03 BT (d) 5 July 2017 (Orange line represents the 35 dBz contour line, red line represents the 40 dBz contour line, blue polygon represents ZDR arc, green polygon represents KDP foot,circle represents the centroid of ZH star represents the centroid of ZDR arc, triangle represents the centroid of KDP foot,solid black line represents the separation vector)

    图 6  2021年7月6日15时47分南通双偏振雷达1.5°仰角ZH(a)、ZDR(b)、KDP(c)和Vr(d)(黑色多边形表示ZDR弧的范围)

    Figure 6.  ZH (a),ZDR (b),KDP (c) and Vr (d) at 0.5° elevation angle observed by Nantong dual-polarimetric radar at 15:47 BT 6 July 2021 (black polygon represents the ZDR arc)

    图 7  2021年7月6日15时47分 (a) 及15时53分 (b)KDP足及ZDR弧识别结果 (橙色实线为35 dBz等值线,红色实线为40 dBz等值线,蓝色多边形为ZDR弧,绿色多边形为KDP足范围,黑色圆圈为ZH质心,星号为ZDR弧质心,三角为KDP足质心,黑色实线为分离矢量)

    Figure 7.  Recognition of ZDR arc and KDP foot at 15:47 BT (a) and 15:53 BT (b) 6 July 2021 (Orange line represents the 35 dBz contour line, red line represents the 40 dBz contour line, blue polygon represents ZDR arc,green polygon represents KDP foot,circle represents the centroid of ZH star represents the centroid of ZDR arc,triangle represents the centroid of KDP foot,solid black line represents the separation vector)

    图 8  2020年7月22日17时35分蚌埠双偏振雷达0.5°仰角ZH(a)、ZDR(b)、KDP(c)和Vr(d)(黑色多边形表示ZDR弧的范围)

    Figure 8.  ZH (a),ZDR (b),KDP (c) and Vr (d) at 0.5° elevation angle observed by Bengbu dual-polarimetric radar at 17:35 BT 22 July 2020 (black polygon represents the ZDR arc)

    图 9  2020年7月22日17时35分 (a) 及17时46分 (b)KDP足及ZDR弧识别结果 (橙色实线为35 dBz等值线,红色实线为40 dBz等值线,蓝色多边形为ZDR弧,绿色多边形为KDP足范围,黑色圆圈为ZH质心,星号为ZDR弧质心,三角为KDP足质心,黑色实线为分离矢量)

    Figure 9.  Recognition of ZDR arc and KDP foot at 17:35 BT (a) and 17:46 BT (b) 22 July 2021 (Orange line represents the 35 dBz contour line, red line represents the 40 dBz contour line, blue polygon represents ZDR arc, green polygon represents KDP foot,circle represents the centroid of ZH,star represents the centroid of ZDR arc, triangle represents the centroid of KDP foot, solid black line represents the separation vector)

    图 10  2021年5月14日18时54分青浦双偏振雷达0.5°仰角ZH(a)、ZDR(b)、KDP(c)和Vr(d)(黑色多边形表示ZDR弧的范围)

    Figure 10.  ZH (a),ZDR (b),KDP (c) and Vr (d) at 0.5° elevation angle observed by Qingpu dual-polarimetric radar at 18:54 BT 14 May 2021 (black polygon represents the ZDR arc)

    图 11  2021年5月14日18时48分 (a)、18时54分 (b)、19时00分 (c) 及19时06分KDP足及ZDR弧识别结果 (橙色实线为35 dBz等值线,红色实线为40 dBz等值线,蓝色多边形为ZDR弧,绿色多边形为KDP足范围,黑色圆圈为ZH质心,星号为ZDR弧质心,三角为KDP足质心,黑色实线为分离矢量)

    Figure 11.  Recognition of ZDR arc and KDP foot at 18:48 BT (a),18:54 BT (b),19:00 BT (c) and 19:06 (d) BT 14 May 2021 (Orange line represents the 35 dBz contour line,red line represents the 40 dBz contour line, blue polygon represents ZDR arc, green polygon represents KDP foot, black circle represents the centroid of ZH black star represents the centroid of ZDR arc, black triangle represents the centroid of KDP foot, solid black line represents the separation vector)

    图 12  ZDR弧出现位置和地面极大风演变 (紫色圆圈为龙卷出现地点,自左往右分别对应2021年5月14日18时52分、18时54分、19时04分和19时12分)

    Figure 12.  ZDR arc location and extreme surface wind (pink circle represents the path of tornado,from left to right show winds at 18:52 BT,18:54 BT,19:04 BT and 19:12 BT 14 May 2021)

    表  1  WSR-88D和CINRAD-SAD雷达主要技术指标

    Table  1.   Technical indicators of WSR-88D and CINRAD-SAD radars

    雷达参数WSR-88D雷达CINRAD-SAD雷达
    雷达频率    2900 MHz2830 MHz
    波束宽度    0.89°0.95°
    窄脉冲     1.47 μs1.56 μs
    宽脉冲     4.62 μs4.51 μs
    脉冲重复频率  321—1013 Hz321—1013 Hz
    距离库长    250 m250 m
    基数据产品   ZHVrWZDRρhvϕDPZHVrWZDRρhvϕDPKDP
    最大探测范围  ZH 460 km;VrWZDRρhvϕDP 300 kmZHZDRρhvϕDPKDP 460 km;VrW 230 km
    基数据产品分辨率0.5°和1.5°仰角:切向0.5°,径向250 m
    2.4°至19.3°仰角:切向1°,径向250 m
    切向约1°,径向250 m
    下载: 导出CSV

    表  2  模型训练因子

    Table  2.   Variables used for training of machine learning

    变量名称单位
     ZDR单体面积km2
     ZDR单体与ZH单体质心距离km
     ZDR单体平均ZDRdB
     ZDR单体最大ZDRdB
     ZDR单体平均ρhv/
     ZDR单体平均KDP°/km
     ZDR单体平均ZHdBz
     ZDR单体ZH梯度dBz/km
     ZDR单体ZH梯度与FFD的夹角°
     ZDR单体中心与$ {Z}_{\mathrm{H}} $单体中心连线与FFD的夹角°
     ZDR单体中心与ZH单体中心连线在X方向的分量km
     ZDR单体中心与ZH单体中心连线在Y方向的分量km
    下载: 导出CSV

    表  3  KDP-ZDR分离特征量

    Table  3.   KDP-ZDR separation variables

    时间ZDR弧面积(km2ZDR弧均值(dB)ZDR弧最大平均(dB)(10个最大值)质心距离(km)分离角(°)
    18时18分24.583.805.044.2542.54
    18时24分51.303.784.686.08−7.42
    18时30分30.713.464.683.6678.32
    18时36分29.213.574.603.5350.81
    18时42分10.573.263.594.9226.15
    18时48分37.593.514.466.5114.02
    18时54分50.043.674.774.2038.94
    19时00分87.763.804.957.97 6.41
    19时06分67.983.465.047.55−1.18
    19时12分54.513.354.337.0526.92
    下载: 导出CSV
  • [1] 戴建华,陶岚,丁杨等. 2012. 一次罕见飑前强降雹超级单体风暴特征分析. 气象学报,70(4):609-627 doi: 10.11676/qxxb2012.050

    Dai J H,Tao L,Ding Y,et al. 2012. Case analysis of a large hail-producing severe supercell ahead of a squall line. Acta Meteor Sinica,70(4):609-627 (in Chinese) doi: 10.11676/qxxb2012.050
    [2] 刁秀广,郭飞燕. 2021. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析. 气象学报,79(2):181-195

    Diao X G,Guo F Y. 2021. Analysis of polarimetric signatures in the supercell thunderstorm occurred in Zhucheng on 16 August 2019. Acta Meteor Sinica,79(2):181-195 (in Chinese)
    [3] 黄先香,俞小鼎,炎利军等. 2019. 1804号台风“艾云尼”龙卷分析. 气象学报,77(4):645-661 doi: 10.11676/qxxb2019.055

    Huang X X,Yu X D,Yan L J,et al. 2019. An analysis on tornadoes in typhoon Ewiniar. Acta Meteor Sinica,77(4):645-661 (in Chinese) doi: 10.11676/qxxb2019.055
    [4] 梅垚,胡志群,黄兴友等. 2018. 青藏高原对流云的偏振雷达观测研究. 气象学报,76(6):1014-1028 doi: 10.11676/qxxb2018.037

    Mei Y,Hu Z Q,Huang X Y,et al. 2018. A study of convective clouds in the Tibetan Plateau based on dual polarimetric radar observations. Acta Meteor Sinica,76(6):1014-1028 (in Chinese) doi: 10.11676/qxxb2018.037
    [5] 潘佳文,高丽,魏鸣等. 2021. 基于S波段双偏振雷达观测的雹暴偏振特征分析. 气象学报,79(1):168-180

    Pan J W,Gao L,Wei M,et al. 2021. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica,79(1):168-180 (in Chinese)
    [6] 陶岚,管理,孙敏等. 2019. 双线偏振多普勒雷达对一次降雹超级单体发展减弱阶段的演变分析. 气象科学,39(5):685-697

    Tao L,Guan L,Sun M,et al. 2019. Evolution analysis of a hail-producing supercell using dual polarization Doppler radar. Scientia Meteor Sinica,39(5):685-697 (in Chinese)
    [7] 王秀明,钟青,韩慎友. 2009. 一次冰雹天气强对流(雹)云演变及超级单体结构的个例模拟研究. 高原气象,28(2):352-365

    Wang X M,Zhong Q,Han S Y. 2009. A numerical case study on the evolution of hail cloud and the three-dimensional structure of supercell. Plateau Meteor,28(2):352-365 (in Chinese)
    [8] 杨吉,郑媛媛,徐芬. 2020. 江淮地区一次冰雹过程的双线偏振雷达观测分析. 气象学报,78(4):568-579 doi: 10.11676/qxxb2020.031

    Yang J,Zheng Y Y,Xu F. 2020. An analysis of a hail case over the Yangtze and Huai River Basin based on dual-polarization radar observations. Acta Meteor Sinica,78(4):568-579 (in Chinese) doi: 10.11676/qxxb2020.031
    [9] 杨璐,陈明轩,孟金平等. 2018. 北京地区雷暴大风不同生命期内的雷达统计特征及预警提前量分析. 气象,44(6):802-813 doi: 10.7519/j.issn.1000-0526.2018.06.008

    Yang L,Chen M X,Meng J P,et al. 2018. Radar statistical characteristics and warning lead analysis of thunderstorm gales in different life periods in Beijing. Meteor Mon,44(6):802-813 (in Chinese) doi: 10.7519/j.issn.1000-0526.2018.06.008
    [10] 杨忠林,赵坤,徐坤等. 2019. 江淮梅雨期极端对流微物理特征的双偏振雷达观测研究. 气象学报,77(1):58-72 doi: 10.11676/qxxb2018.040

    Yang Z L,Zhao K,Xu K,et al. 2019. Microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe river basin during the Meiyu season based on polarimetric radar data. Acta Meteor Sinica,77(1):58-72 (in Chinese) doi: 10.11676/qxxb2018.040
    [11] 杨祖祥,赵森,李萌萌等. 2021. 2020年7月22日安徽梅雨期龙卷的双偏振雷达观测分析. 热带气象学报,37(5/6):836-844

    Yang Z X,Zhao S,Li M M,et al. 2021. Polarimetric signatures in tornadic supercell thunderstorms on July 22,2020 in Anhui Province. J Trop Meteor,37(5/6):836-844 (in Chinese)
    [12] 郑永光,蓝渝,曹艳察等. 2020. 2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理. 气象,46(5):589-602 doi: 10.7519/j.issn.1000-0526.2020.05.001

    Zheng Y G,Lan Y,Cao Y C,et al. 2020. Environmental conditions,evolution and mechanisms of the EF4 tornado in Kaiyuan of Liaoning province on 3 July 2019. Meteor Mon,46(5):589-602 (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.05.001
    [13] 郑媛媛,俞小鼎,方翀等. 2004. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报,62(3):317-328 doi: 10.3321/j.issn:0577-6619.2004.03.006

    Zheng Y Y,Yu X D,Fang C,et al. 2004. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica,62(3):317-328 (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.03.006
    [14] Brandes E A,Vivekanandan J,Tuttle J D,et al. 1995. A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon Wea Rev,123(11):3129-3143 doi: 10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2
    [15] Browning K A,Donaldson R J. 1963. Airflow and structure of a tornadic storm. J Atmos Sci,20(6):533-545 doi: 10.1175/1520-0469(1963)020<0533:AASOAT>2.0.CO;2
    [16] Crowe C C,Schultz C J,Kumjian M,et al. 2012. Use of dual-polarization signatures in diagnosing tornadic potential. Electron J Oper Meteor,13(5):57-78
    [17] Dawson D T,Mansell E R,Jung Y,et al. 2014. Low-level ZDR signatures in supercell forward flanks:The role of size sorting and melting of hail. J Atmos Sci,71(1):276-299 doi: 10.1175/JAS-D-13-0118.1
    [18] Fujita T. 1958. Mesoanalysis of the Illinois tornadoes of 9 April 1953. J Atmos Sci,15(3):288-296
    [19] Kumjian M R,Ryzhkov A V. 2008. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol,47(7):1940-1961 doi: 10.1175/2007JAMC1874.1
    [20] Kumjian M R,Khain A P,Benmoshe N,et al. 2014. The anatomy and physics of ZDR columns:Investigating a polarimetric radar signature with a spectral bin microphysical model. J Appl Meteor Climatol,53(7):1820-1843 doi: 10.1175/JAMC-D-13-0354.1
    [21] Loeffler S D,Kumjian M R. 2018. Quantifying the separation of enhanced ZDR and KDP regions in nonsupercell tornadic storms. Wea Forecast,33(5):1143-1157 doi: 10.1175/WAF-D-18-0011.1
    [22] Marwitz J D. 1972. The structure and motion of severe hailstorms. Part Ⅰ:Supercell storms. J Appl Meteor Climatol,11(1):166-179 doi: 10.1175/1520-0450(1972)011<0166:TSAMOS>2.0.CO;2
    [23] Palmer R D,Bodine D,Kumjian M,et al. 2011. Observations of the 10 May 2010 tornado outbreak using OU-PRIME:Potential for new science with high-resolution polarimetric radar. Bull Amer Meteor Soc,92(7):871-891 doi: 10.1175/2011BAMS3125.1
    [24] Romine G S,Burgess D W,Wilhelmson R B. 2008. A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma city area tornadic supercell. Mon Wea Rev,136(8):2849-2870 doi: 10.1175/2008MWR2330.1
    [25] Ryzhkov A V,Schuur T J,Burgess D W,et al. 2005. Polarimetric tornado detection. J Appl Meteor Climatol,44(5):557-570 doi: 10.1175/JAM2235.1
    [26] Stout G E,Huff F A. 1953. Radar records illinois tornadogenesis. Bull Amer Meteor Soc,34(6):281-284 doi: 10.1175/1520-0477-34.6.281
    [27] Van Den Broeke M S. 2016. Polarimetric variability of classic supercell storms as a function of environment. J Appl Meteor Climatol,55(9):1907-1925 doi: 10.1175/JAMC-D-15-0346.1
    [28] Van Den Broeke M S. 2017. Polarimetric radar metrics related to tornado life cycles and intensity in supercell storms. Mon Wea Rev,145(9):3671-3686 doi: 10.1175/MWR-D-16-0453.1
    [29] Wilson M B,Van Den Broeke M S. 2021. An automated python algorithm to quantify ZDR Arc and KDP-ZDR separation signatures in supercells. J Atmos Ocean Technol,38(2):371-386 doi: 10.1175/JTECH-D-20-0056.1
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  102
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 录用日期:  2022-06-09
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回