留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种陆面模式对中国区域土壤温度模拟的对比分析

孙帅 师春香 梁晓 姜立鹏 徐宾 韩帅 谷军霞 粟运

孙帅,师春香,梁晓,姜立鹏,徐宾,韩帅,谷军霞,粟运. 2022. 两种陆面模式对中国区域土壤温度模拟的对比分析. 气象学报,80(4):533-545 doi: 10.11676/qxxb2022.048
引用本文: 孙帅,师春香,梁晓,姜立鹏,徐宾,韩帅,谷军霞,粟运. 2022. 两种陆面模式对中国区域土壤温度模拟的对比分析. 气象学报,80(4):533-545 doi: 10.11676/qxxb2022.048
Sun Shuai, Shi Chunxiang, Liang Xiao, Jiang Lipeng, Xu Bin, Han Shuai, Gu Junxia, Su Yun. 2022. Comparative analysis of soil temperature simulated by two land surface models in China. Acta Meteorologica Sinica, 80(4):533-545 doi: 10.11676/qxxb2022.048
Citation: Sun Shuai, Shi Chunxiang, Liang Xiao, Jiang Lipeng, Xu Bin, Han Shuai, Gu Junxia, Su Yun. 2022. Comparative analysis of soil temperature simulated by two land surface models in China. Acta Meteorologica Sinica, 80(4):533-545 doi: 10.11676/qxxb2022.048

两种陆面模式对中国区域土壤温度模拟的对比分析

doi: 10.11676/qxxb2022.048
基金项目: 国家自然科学基金项目(42161054)、国家重点研发计划项目(2019YFA0606904、2018YFC1506600)、国家气象信息中心结余项目(NMICJY202104)
详细信息
    作者简介:

    孙帅,主要从事陆面过程模拟与同化研究。E-mail:sunshuai@cma.gov.cn

    通讯作者:

    师春香,主要从事多源气象数据融合、陆面同化与再分析研究。E-mail:shicx@cma.gov.cn

  • 中图分类号: P49

Comparative analysis of soil temperature simulated by two land surface models in China

  • 摘要: 为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明: GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。

     

  • 图 1  用于评估的中国气象局2380个土壤温度观测站点分布 (a. 东北,b. 华北,c. 江淮,d. 华南,e. 西北东部,f. 西南,g. 西北西部,h. 青藏高原)

    Figure 1.  Distribution map of 2380 soil temperature observation stations of China Meteorological Administration used for evaluation (a. Northeast,b. North China,c. Jianghuai,d. South China,e. Northwest east,f. Southwest,g. Northwest west,h. Tibet)

    图 2  2010—2018年GLDAS_Noah (a—d)、CLDAS_Noah (e—h)、CLDAS_Noah-MP (i—l)模式模拟的10 cm土壤温度 (色阶,单位:℃) 不同季节 (a、e、i. 春季,b、f、j. 夏季,c、g、k. 秋季,d、h、l. 冬季) 平均空间分布

    Figure 2.  Season average (a,e,i. Spring;b,f,j. Summer;c,g,k. Autumn;d,h,l. Winter) spatial distributions of 10 cm soil temperature (shading,unit:℃) of GLDAS_Noah (a—d),CLDAS_Noah (e—h),CLDAS_Noah-MP (i—l) from 2010 to 2018

    图 3  GLDAS_Noah、CLDAS_Noah、CLDAS_Noah-MP模拟的不同季节 (a—c. 春季,d—f. 夏季,g—i. 秋季,j—l. 冬季) 10 cm土壤温度与观测比较

    Figure 3.  Overall evaluation results of 10 cm soil temperature of GLDAS_Noah,CLDAS_Noah and CLDAS_Noah-MP in different seasons (a—c. Spring,d—f. Summer,g—i. Autumn,j—l. Winter)

    图 4  GLDAS_Noah、CLDAS_Noah、CLDAS_Noah-MP模拟的不同季节 (a—c. 春季,d—f. 夏季,g—i. 秋季,j—l. 冬季) 40 cm土壤温度与观测比较

    Figure 4.  Overall evaluation results of 40 cm soil temperature of GLDAS_Noah,CLDAS_Noah,CLDAS_Noah-MP in different seasons (a—c. Spring,d—f. Summer,g—i. Autumn,j—l. Winter)

    图 5  2010—2018年CLDAS_Noah、CLDAS_Noah-MP模式模拟的春 (a)、冬 (b) 季雪深差异 (CLDAS_Noah-MP−CLDAS_Noah,单位:cm)

    Figure 5.  Snow depth comparison of CLDAS_Noah,CLDAS_Noah-MP in spring (a) and winter (b) from 2010 to 2018 (CLDAS_Noah-MP−CLDAS_Noah,unit:cm)

    图 6  GLDAS_Noah、CLDAS_Noah、CLDAS_Noah-MP模拟的不同分区10 cm土壤温度均方根误差时间序列 (a. 东北,b. 华北,c. 江淮,d. 华南,e. 西北东部,f. 西南,g. 西北西部,h. 青藏高原)

    Figure 6.  Time series of 10 cm soil temperature RMSE for GLDAS_Noah and CLDAS_Noah,CLDAS_Noah-MP in different regions (a. Northeast,b. North China,c. Jianghuai,d. South China,e. Northwest east,f. Southwest,g. Northwest west,h. Tibet)

    图 7  GLDAS_Noah、CLDAS_Noah、CLDAS_Noah-MP模拟的不同分区40 cm土壤温度均方根误差时间序列 (a. 东北,b. 华北,c. 江淮,d. 华南,e. 西北东部,f. 西南,g. 西北西部,h. 青藏高原)

    Figure 7.  Time series of 40 cm soil temperature RMSE for GLDAS_Noah,CLDAS_Noah and CLDAS_Noah-MP in different regions (a. Northeast,b. North China,c. Jianghuai,d. South China,e. Northwest East,f. Southwest,g. Northwest West,h. Tibet)

    表  1  试验方案设计

    Table  1.   Design of experiments

    大气驱动数据模式简称
    试验1GLDASNoahGLDAS_Noah
    试验2CLDASNoahCLDAS_Noah
    试验3CLDASNoah-MPCLDAS_Noah-MP
    下载: 导出CSV
  • [1] 崔园园,敬文琪,覃军. 2018. 基于TIPEX Ⅲ资料对CLDAS-V2.0和GLDAS-NOAH陆面模式产品在青藏高原地区的适用性评估. 高原气象,37(5):1143-1160

    Cui Y Y,Jing W Q,Qin J. 2018. Applicability evaluation of merged soil moisture in GLDAS-NOAH and CLDAS-V2.0 products over Qinghai-Tibetan Plateau of 2015 based on TIPEX Ⅲ observations. Plateau Meteor,37(5):1143-1160 (in Chinese)
    [2] 丁旭,赖欣,范广洲等. 2018. 再分析土壤温湿度资料在青藏高原地区适用性的分析. 高原气象,37(3):626-641

    Ding X,Lai X,Fan G Z,et al. 2018. Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau. Plateau Meteor,37(3):626-641 (in Chinese)
    [3] 高艳红,刘伟,曾礼. 2021. 陆面过程高分辨率模拟的不确定性. 高原气象,40(6):1364-1376

    Gao Y H,Liu W,Zeng L. 2021. Uncertainties in the regional high-resolution land surface simulations. Plateau Meteor,40(6):1364-1376 (in Chinese)
    [4] 李文静,罗斯琼,郝晓华等. 2021. 青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究. 高原气象,40(3):455-471

    Li W J,Luo S Q,Hao X H,et al. 2021. Observations of East Qinghai-Xizang Plateau snow cover effects on surface energy and water exchange in different seasons. Plateau Meteor,40(3):455-471 (in Chinese)
    [5] 刘川,余晔,解晋等. 2015. 多套土壤温湿度资料在青藏高原的适用性. 高原气象,34(3):653-665 doi: 10.7522/j.issn.1000-0534.2015.00034

    Liu C,Yu Y,Xie J,et al. 2015. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau. Plateau Meteor,34(3):653-665 (in Chinese) doi: 10.7522/j.issn.1000-0534.2015.00034
    [6] 刘火霖,胡泽勇,韩赓等. 2020. 基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估. 高原气象,39(1):1-14

    Liu H L,Hu Z Y,Han G,et al. 2020. Assessment of freeze-thaw process simulation in Qinghai-Tibetan Plateau by different parameterization schemes based on Noah-MP land surface model. Plateau Meteor,39(1):1-14 (in Chinese)
    [7] 刘军建,师春香,韩帅等. 2018. 多源地面短波辐射数据融合与评估. 遥感技术与应用,33(5):850-856

    Liu J J,Shi C X,Han S,et al. 2018. The data fusion of multi-source downward surface solar radiation and evaluation. Remote Sens Technol Appl,33(5):850-856 (in Chinese)
    [8] 马柱国,魏和林,符淙斌. 2000. 中国东部区域土壤湿度的变化及其与气候变率的关系. 气象学报,58(3):278-287 doi: 10.3321/j.issn:0577-6619.2000.03.003

    Ma Z G,Wei H L,Fu C B. 2000. Relationship between regional soil moisture variation and climatic variability over East China. Acta Meteor Sinica,58(3):278-287 (in Chinese) doi: 10.3321/j.issn:0577-6619.2000.03.003
    [9] 孟现勇,王浩,刘志辉等. 2017. 基于CLDAS强迫CLM3.5模式的新疆区域土壤温度陆面过程模拟及验证. 生态学报,37(3):979-995

    Meng X Y,Wang H,Liu Z H,et al. 2017. Simulation and verification of land surface soil temperatures in the Xinjiang Region by the CLM3.5 model forced by CLDAS. Acta Ecol Sinica,37(3):979-995 (in Chinese)
    [10] 沈润平,郭倩,陈萍萍等. 2019. 高分辨率大气强迫和植被功能型数据对青藏高原土壤温度模拟影响. 高原气象,38(6):1129-1139 doi: 10.7522/j.issn.1000-0534.2018.00159

    Shen R P,Guo Q,Chen P P,et al. 2019. Impact of high-resolution atmospheric forcing and plant functional types datasets on soil temperature simulation in the Qinghai-Tibetan Plateau. Plateau Meteor,38(6):1129-1139 (in Chinese) doi: 10.7522/j.issn.1000-0534.2018.00159
    [11] 师春香,谢正辉,钱辉等. 2011. 基于卫星遥感资料的中国区域土壤湿度EnKF数据同化. 中国科学:地球科学,41(3):375-385. Shi C X,Xie Z H,Qian H,et al. 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci China Earth Sci,54(9):1430-1440.
    [12] 师春香,潘旸,谷军霞等. 2019. 多源气象数据融合格点实况产品研制进展. 气象学报,77(4):774-783 doi: 10.11676/qxxb2019.043

    Shi C X,Pan Y,Gu J X,et al. 2019. A review of multi-source meteorological data fusion products. Acta Meteor Sinica,77(4):774-783 (in Chinese) doi: 10.11676/qxxb2019.043
    [13] 孙丞虎,李维京,张祖强等. 2005. 淮河流域冬春季土壤温湿度异常对夏季降水的影响及其应用的研究. 气象学报,63(1):115-122 doi: 10.3321/j.issn:0577-6619.2005.01.012

    Sun C H,Li W J,Zhang Z Q,et al. 2005. Impact of Huaihe River basin soil temperature and humidity abnormality in pre-winter and springtime on the anomalous summer rainfall and its application. Acta Meteor Sinica,63(1):115-122 (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.01.012
    [14] 杨江艳. 2021. 中国区域土壤温度的时空变化特征. 自然科学,9(1):87-99 doi: 10.12677/OJNS.2021.91012

    Yang J Y. 2021. Temporal and spatial distribution characteristics of soil temperature over China. Open J Nat Sci,9(1):87-99 (in Chinese) doi: 10.12677/OJNS.2021.91012
    [15] 张慧智,史学正,于东升等. 2009. 中国土壤温度的季节性变化及其区域分异研究. 土壤学报,46(2):227-234 doi: 10.3321/j.issn:0564-3929.2009.02.006

    Zhang H Z,Shi X Z,Yu D S,et al. 2009. Seasonal and regional variations of soil temperature in China. Acta Pedologica Sinica,46(2):227-234 (in Chinese) doi: 10.3321/j.issn:0564-3929.2009.02.006
    [16] 赵芳,何文春,张小缨等. 2018. 全国综合气象信息共享平台建设. 气象科技进展,8(1):171-180 doi: 10.3969/j.issn.2095-1973.2018.01.023

    Zhao F,He W C,Zhang X Y,et al. 2018. Construction of China integrated meteorological information sharing system. Adv Meteor Sci Technol,8(1):171-180 (in Chinese) doi: 10.3969/j.issn.2095-1973.2018.01.023
    [17] 朱蒙,陈海山,蒋薇等. 2014. 陆面热力因子应用于中国夏季降水预测的初步试验. 气象学报,72(6):1135-1142 doi: 10.11676/qxxb2014.062

    Zhu M,Chen H S,Jiang W,et al. 2014. A preliminary test of the summer rainfall prediction in China based on the land surface thermal factors. Acta Meteor Sinica,72(6):1135-1142 (in Chinese) doi: 10.11676/qxxb2014.062
    [18] Ek M,Mitchell K,Lin Y,et al. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res:Atmos,108(D22):8851
    [19] Fan X G. 2009. Impacts of soil heating condition on precipitation simulations in the Weather Research and Forecasting Model. Mon Wea Rev,137(7):2263-2285 doi: 10.1175/2009MWR2684.1
    [20] Godfrey C M,Stensrud D J. 2008. Soil temperature and moisture errors in Operational Eta Model Analyses. J Hydrometeorol,9(3):367-387 doi: 10.1175/2007JHM942.1
    [21] Han S,Shi C X,Xu B,et al. 2019. Development and evaluation of hourly and kilometer resolution retrospective and Real-Time Surface Meteorological Blended Forcing Dataset (SMBFD) in China. J Meteor Res,33(6):1168-1181 doi: 10.1007/s13351-019-9042-9
    [22] Hawkes C V,Hartley I P,Ineson P,et al. 2008. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol,14(5):1181-1190 doi: 10.1111/j.1365-2486.2007.01535.x
    [23] Landhäusser S M,DesRochers A,Lieffers V J. 2001. A comparison of growth and physiology in Picea glauca and Populus tremuloides at different soil temperatures. Canadian J Forest Res,31(11):1922-1929 doi: 10.1139/x01-129
    [24] Lavigne M B,Foster R J,Goodine G. 2004. Seasonal and annual changes in soil respiration in relation to soil temperature,water potential and trenching. Tree Physiol,24(4):415-424 doi: 10.1093/treephys/24.4.415
    [25] Liang X,Jiang L P,Pan Y,et al. 2020. A 10-yr global land surface reanalysis interim dataset (CRA-Interim/Land):Implementation and preliminary evaluation. J Meteor Res,34(1):101-116 doi: 10.1007/s13351-020-9083-0
    [26] Liu J G,Shi C X,Sun S,et al. 2019. Improving land surface hydrological simulations in China using CLDAS meteorological forcing data. J Meteor Res,33(6):1194-1206 doi: 10.1007/s13351-019-9067-0
    [27] Niu G Y,Yang Z L,Mitchell K E,et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP):1. Model description and evaluation with local-scale measurements. J Geophys Res:Atmos,116(D12):D12109 doi: 10.1029/2010JD015139
    [28] Rodell M,Houser P R,Jambor U,et al. 2004. The global land data assimilation system. Bull Amer Meteor Soc,85(3):381-394 doi: 10.1175/BAMS-85-3-381
    [29] Sun S,Shi C X,Pan Y,et al. 2020. Applicability assessment of the 1998-2018 CLDAS multi-source precipitation fusion dataset over China. J Meteor Res,34(4):879-892 doi: 10.1007/s13351-020-9101-2
    [30] Yang Z L,Niu G Y,Mitchell K E,et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP):2. Evaluation over global river basins. J Geophys Res:Atmos,116(D12):D12110 doi: 10.1029/2010JD015140
    [31] Yuan X,Ji P,Wang L Y,et al. 2018. High-resolution land surface modeling of hydrological changes over the Sanjiangyuan region in the eastern Tibetan Plateau:1. Model development and evaluation. J Adv Model Earth Syst,10(11):2806-2828 doi: 10.1029/2018MS001412
    [32] Zhang G,Chen Y L,Li J D. 2021. Effects of organic soil in the Noah-MP land-surface model on simulated skin and soil temperature profiles and surface energy exchanges for China. Atmos Res,249:105284 doi: 10.1016/j.atmosres.2020.105284
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  29
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回